912 resultados para model selection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We nd that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We find that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellites and space equipment are exposed to diffuse acoustic fields during the launch process. The use of adequate techniques to model the response to the acoustic loads is a fundamental task during the design and verification phases. Considering the modal density of each element is necessary to identify the correct methodology. In this report selection criteria are presented in order to choose the correct modelling technique depending on the frequency ranges. A model satellite’s response to acoustic loads is presented, determining the modal densities of each component in different frequency ranges. The paper proposes to select the mathematical method in each modal density range and the differences in the response estimation due to the different used techniques. In addition, the methodologies to analyse the intermediate range of the system are discussed. The results are compared with experimental testing data obtained in an experimental modal test.