977 resultados para mixed transfer functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals (Cd, Cu, Fe, Mn and Zn) concentrations were determined in different tissues (muscle, kidney, liver, brain, gonads, heart and feathers) of Glaucous Gulls (Larus hyperboreus) from Bjornoya and Jan Mayen. The age and spatial dependent variations in heavy metals were quantified and interpreted in view of the three chemometric techniques, i.e. non-parametric Mann-Whitney U test, redundancy gradient analysis and detrended correspondence analysis. The Glaucous Gulls from Bjornoya contained significantly higher (p < 0.05) levels of Cd, Cu and Zn than those inhabited Jan Mayen. Adult birds were characterized by greater (p < 0.01) concentration of muscle, hepatic and renal heavy metals in comparison to chicks. Insignificantly higher slope constant Zn/Cd for the liver than for the kidney may reflect insignificant Cd exposure. Estimate of transfer factor (TF) allows us to assess variations in heavy metal concentrations during the individual development of Glaucous Gulls. It may be stated that there is a distinct increase of bioaccumulation of all the studied metals during subsequent stages of the bird life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis will show how to equalise the effect of quantal noise across spatial frequencies by keeping the retinal flux (If-2) constant. In addition, quantal noise is used to study the effect of grating area and spatial frequency on contrast sensitivity resulting in the extension of the new contrast detection model describing the human contrast detection system as a simple image processor. According to the model the human contrast detection system comprises low-pass filtering due to ocular optics, addition of light dependent noise at the event of quantal absorption, high-pass filtering due to the neural visual pathways, addition of internal neural noise, after which detection takes place by a local matched filter, whose sampling efficiency decreases as grating area is increased. Furthermore, this work will demonstrate how to extract both the optical and neural modulation transfer functions of the human eye. The neural transfer function is found to be proportional to spatial frequency up to the local cut-off frequency at eccentricities of 0 - 37 deg across the visual field. The optical transfer function of the human eye is proposed to be more affected by the Stiles-Crawford -effect than generally assumed in the literature. Similarly, this work questions the prevailing ideas about the factors limiting peripheral vision by showing that peripheral optical acts as a low-pass filter in normal viewing conditions, and therefore the effect of peripheral optics is worse than generally assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital systems can generate left and right audio channels that create the effect of virtual sound source placement (spatialization) by processing an audio signal through pairs of Head-Related Transfer Functions (HRTFs) or, equivalently, Head-Related Impulse Responses (HRIRs). The spatialization effect is better when individually-measured HRTFs or HRIRs are used than when generic ones (e.g., from a mannequin) are used. However, the measurement process is not available to the majority of users. There is ongoing interest to find mechanisms to customize HRTFs or HRIRs to a specific user, in order to achieve an improved spatialization effect for that subject. Unfortunately, the current models used for HRTFs and HRIRs contain over a hundred parameters and none of those parameters can be easily related to the characteristics of the subject. This dissertation proposes an alternative model for the representation of HRTFs, which contains at most 30 parameters, all of which have a defined functional significance. It also presents methods to obtain the value of parameters in the model to make it approximately equivalent to an individually-measured HRTF. This conversion is achieved by the systematic deconstruction of HRIR sequences through an augmented version of the Hankel Total Least Squares (HTLS) decomposition approach. An average 95% match (fit) was observed between the original HRIRs and those re-constructed from the Damped and Delayed Sinusoids (DDSs) found by the decomposition process, for ipsilateral source locations. The dissertation also introduces and evaluates an HRIR customization procedure, based on a multilinear model implemented through a 3-mode tensor, for mapping of anatomical data from the subjects to the HRIR sequences at different sound source locations. This model uses the Higher-Order Singular Value Decomposition (HOSVD) method to represent the HRIRs and is capable of generating customized HRIRs from easily attainable anatomical measurements of a new intended user of the system. Listening tests were performed to compare the spatialization performance of customized, generic and individually-measured HRIRs when they are used for synthesized spatial audio. Statistical analysis of the results confirms that the type of HRIRs used for spatialization is a significant factor in the spatialization success, with the customized HRIRs yielding better results than generic HRIRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. ^ One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. ^ Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this approach. The model is simple, yet versatile because it relies on easy to measure parameters to create an individualized HRTF. This low-order parameterized model also reduces the computational and storage demands, while maintaining a sufficient number of perceptually relevant spectral cues. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quasi-sinusoidal linearly tunable OTA-C VCO built with triode-region transconductors is presented. Oscillation upon power-on is ensured by RHP poles associated with gate-drain capacitances of OTA input devices. Since the OTA nonlinearity stabilizes the amplitude, the oscillation frequency f0 is first-order independent of VDD, making the VCO adequate to mixed-mode designs. A range of simulations attests the theoretical analysis. As part of a DPLL, the VCO was prototyped on a 0.8μm CMOS process, occupying an area of 0.15mm2. Nominal f0 is 1MHz, with K VCo=8.4KHz/mV. Measured sensitivity to VDD is below 2.17, while phase noise is -86dBc at 100-KHz offset. The feasibility of the VCO for higher frequencies is verified by a redesign based on a 0.35μm CMOS process and VDD=3.3V, with a linear frequency-span of l3.2MHz - 61.5MHz.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). Methods: A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. Conclusions: The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multilayered heterostructures based on embedded a-Si:H and a-SiC:H p-i-n filters are analyzed from differential voltage design perspective using short- and long-pass filters. The transfer functions characteristics are presented. A numerical simulation is presented to explain the filtering properties of the photonic devices. Several monochromatic pulsed lights, separately (input channels) or in a polychromatic mixture (multiplexed signal) at different bit rates, illuminated the device. Steady-state optical bias is superimposed from the front and the back side. Results show that depending on the wavelength of the external background and impinging side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. Particular attention is given to the amplification coefficient weights, which allow to take into account the wavelength background effects when a band or frequency needs to be filtered or the gate switch, in which optical active filter gates are used to select and filter input signals to specific output ports in wavelength division multiplexing (WDM) communication systems. This nonlinearity provides the possibility for selective removal or addition of wavelengths. A truth table of an encoder that performs 8-to-1 MUX function exemplifies the optoelectronic conversion.