69 resultados para microcalorimetry
Resumo:
Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.
Resumo:
Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.
Resumo:
Phosphomolybdic acid (H3PMo12O40) along with niobium,pyridine and niobium exchanged phosphomolybdic acid catalysts were prepared. Ammonia adsorption microcalorimetry and methanol oxidation studies were carried out to investigate the acid sites strength acid/base/redox properties of each catalyst. The addition of niobium, pyridine or both increased the ammonia heat of adsorption and the total uptake. The catalyst with both niobium and pyridine demonstrated the largest number of strong sites. For the parent H3PMo12O40 catalyst, methanol oxidation favors the redox product. Incorporation of niobium results in similar selectivity to redox products but also results in no catalyst deactivation. Incorporation of pyridine instead changes to the selectivity to favor the acidic product. Finally, the inclusion of both niobium and pyridine results in strong selectivity to the acidic product while also showing no catalyst deactivation. Thus the presence of pyridine appears to enhance the acid property of the catalyst while niobium appears to stabilize the active site.
Resumo:
Bibliography : p. 189-191.
Resumo:
Quantitative analysis of solid-state processes from isothermal microcalorimetric data is straightforward if data for the total process have been recorded and problematic (in the more likely case) when they have not. Data are usually plotted as a function of fraction reacted (α); for calorimetric data, this requires knowledge of the total heat change (Q) upon completion of the process. Determination of Q is difficult in cases where the process is fast (initial data missing) or slow (final data missing). Here we introduce several mathematical methods that allow the direct calculation of Q by selection of data points when only partial data are present, based on analysis with the Pérez-Maqueda model. All methods in addition allow direct determination of the reaction mechanism descriptors m and n and from this the rate constant, k. The validity of the methods is tested with the use of simulated calorimetric data, and we introduce a graphical method for generating solid-state power-time data. The methods are then applied to the crystallization of indomethacin from a glass. All methods correctly recovered the total reaction enthalpy (16.6 J) and suggested that the crystallization followed an Avrami model. The rate constants for crystallization were determined to be 3.98 × 10-6, 4.13 × 10-6, and 3.98 × 10 -6 s-1 with methods 1, 2, and 3, respectively. © 2010 American Chemical Society.
Resumo:
Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.
Resumo:
In contrast to other mammalian defensins, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue, oRTD-1, although both peptides adopt very similar structures in water. It was suggested that the additional charges at the termini of oRTD-1 are the cause for its lower antimicrobial activity. Therefore, we studied the interaction of both peptides with membrane mimics composed of zwitterionic (PC) and negatively charged (PG) phospholipids, major lipid components of erythrocyte and bacterial cell membranes, respectively. Microcalorimetry showed that RTD-1 and oRTD-1 did not affect the phase behavior of PC liposomes, while in PG liposomes both peptides induced new phase transitions above the chain melting transition of the lipid. The shape and fraction differed between both peptides, depending also on their concentration, which will be discussed in terms of their antimicrobial activity.
Resumo:
A new method of measuring heat of desorption is proposed in this Letter. The principle of the method is to measure the amount of mass released when a controlled amount of energy is supplied directly to a solid adsorbent. This is in contrast to conventional methods such as microcalorimetry, where heat released upon adsorption is measured. In this method, a quantified heat supply is generated by passing a de current through a carbon pellet, which is equilibrated with a gas phase confined in a closed vessel. As a consequence of the heating, the particle temperature is increased, resulting in partial desorption of adsorbed molecules. The variations of pellet temperature and the system pressure with respect to time are used to determine the heat of desorption as a function of loading.
Resumo:
Biochemistry, 2004, 43 (46), pp 14566–14576 DOI: 10.1021/bi0485833
Resumo:
Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.
Resumo:
Biofilm formation is a multi-step process influenced by surface properties. We investigated early and mature biofilm of Staphylococcus aureus on 4 different biological calcium phosphate (CaP) bone grafts used for filling bone defects. We investigated standardised cylinders of fresh and fresh-frozen human bone grafts were harvested from femoral heads; processed humanand bovine bone grafts were obtained preformed. Biofilm formation was done in tryptic soy broth (TSB) using S. aureus (ATCC 29213) with static conditions. Biofilm density after 3 h (early biofilm) and 24 h (mature biofilm) was investigated by sonication and microcalorimetry. After 3 h, bacterial density was highest on fresh-frozenandfresh bone grafts. After 24 h, biofilm density was lowest on freshbone grafts (p < 0.001) compared to the other 3 materials, which did not differ quantitatively (p > 0.05). The lowest increase in bacterial density was detected on fresh bone grafts (p < 0.001). Despite normal shaped colonies, we found additional small colonies on the surface of the fresh and fresh-frozen samples by sonication. This was also apparent in microcalorimetric heat-flow curves. The four investigated CaP bone grafts showed minor structural differences in architecture but marked differences concerning serum coverage and the content of bone marrow, fibrous tissue and bone cells. These variations resulted in a decreased biofilm density on freshand fresh-frozenbone grafts after 24 h, despite an increased early biofilm formation and might also be responsible for the variations in colony morphology (small colonies). Detection of small colony variants by microcalorimetry might be a new approach to improve the understanding of biofilm formation.
Resumo:
Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.
Resumo:
Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.
Resumo:
Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.