1000 resultados para methane dehydro-aromatization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic behavior of Mo-based zeolite catalysts with different pore structure and size, particularly with 8 membered ring ( M R), 10 M R, coexisted 10 and 12 M R, and 12 M R, was studied in methane aromatization under the conditions of SV=1500 ml/(g.h), p=0.1 MPa and T = 973 K. It was found that the catalytic performance is correlated with the pore structure of the zeolite supports. The zeolites that possess 10 MR or 10 and 12 MR pore structure with a pore diameter equal to or slightly larger than the dynamic diameter of benzene molecule, such as ZSM-5, ZSM-11, ZRP-1 and MCM-22, are fine supports. Among the tested zeolite supports, MCM-22 exhibits the highest activity and selectivity for benzene. A methane conversion of 10.5% with benzene selectivity of 80% was achieved over Mo/MCM-22 catalyst. The Mo/ERS-7 catalyst with 8 MR (0.45 nm) does not show any activity in methane dehydro-aromatization, while Mo/JQX-1 and Mo/SBA-15 catalysts with 12 MR pore exhibit little activity in the reaction. It can be concluded that the zeolites with 10 MR pore or coexisted 10 and 12 MR, having pore size equal to or slightly larger than the dynamic diameter of benzene molecule, are fine supports for methane activation and aromatization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of space velocity on reaction performance and coke deposition over 6Mo/MCM-22 catalyst in methane dehydro-aromatization (MDA) with CO2 were studied. The characterization of catalysts reacted at different space velocity after the same amount of methane feed by TG, TPO and Benzene/NH3-TPD techniques suggested that the inert coke maybe responsible for the deactivation of catalyst because of its blockage effect for pore system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-steaming treatment of Mo/HZSM-5 catalysts results in more molybdenum species migrating into and residing in the HZSM-5 zeolite channels. This is confirmed by XRF and XPS measurements. H-1 MAS NMR and Si-29 MAS NMR also demonstrate that the number of free Bronsted acid sites decreases in the Mo/HZSM-5 catalysts that underwent post-steaming treatment, compared to untreated Mo/HZSM-5 catalysts. As a result, the deactivation rate constant (kd) on the Mo/HZSM-5 catalyst after post-steaming treatment for 0.5 h is much smaller, and the catalyst therefore shows remarkable stability in the probe reaction of methane dehydro-aromatization. The results suggest that a more beneficial bi-functional balance between active Mo species for methane activation and acid sites for the following aromatization is developed over those Mo/HZSM-5 catalysts that have experienced post-steaming treatment for 0.5 h, in comparison with the untreated Mo/HZSM-5 catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aromatization of methane over a Mo/HZSM-5 catalyst was carried out in the presence of oxygen. It is shown that the addition of a small amount of oxygen is beneficial to improve the durability of the catalyst. UV-Raman spectra disclose that the carbonaceous deposits formed on the HZSM-5 are mainly polyolefinic and aromatic, while that on the Mo/HZSM-5 is mainly polyaromatic. The small amount of O-2 added may partly remove the coke deposits on the active sites and keep the catalyst as MoOxCy/HZSM-5, thus resulting in an improvement of the catalytic performance of the Mo/HZSM-5 catalyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of different species during the temperature-programmed surface reaction (TPSR) of methane over various catalysts is traced by an online mass spectrometer, It is demonstrated that the transformation of MoO3 to molybdenum carbide hinders the activation of methane as well as the succeeding aromatization in the TPSR, If this transformation process is done before the reaction, the temperature needed for methane activation and benzene formation will be greatly lowered (760 and 847 K, respectively). On the basis of comparison of the catalytic behavior of molybdenum supported on different zeolites, it is suggested that the initial activation of methane is the rate-determining step of this reaction. For the cobalt catalysts supported on HMCM-22 or Mo catalysts supported on TiO2, no benzene formation could be observed during the TPSR, However, the prohibition of benzene formation is different in nature over these two catalysts: the former lacks the special properties exhibited by molybdenum carbide, which can continuously activate methane even when multiple layers of carbonaceous species are formed on its surface, while the latter cannot accomplish the aromatization reaction since there are no Bronsted acid sites to which the activated intermediates can migrate, although the activation of methane can be achieved on it. Only for the catalysts that possess both of these properties, together with the special channel structure of zeolite, can efficient methane aromatization be accomplished. (C) 2000 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Steaming-dealuminated HZSM-5-supported molybdenum catalysts have been found to be high coking-resistance catalysts for methane aromatization reactions; compared with conventional catalysts, they give a much higher selectivity towards aromatics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A bench scale reaction test for methane aromatization in the absence of an added oxidant was performed and its reaction result evaluated based on the carbon balance of the system. The result was compared with those obtained from the micro-reaction test to ensure the accuracy of the internal standard analyzing method employed in this paper. The catalytic performances of modified Mo/HZSM-5 catalysts were examined. It was found that pre-treatment by steam on HZSM-5 weakened the serious deposition of coke, and pre-impregnation of n-ethyl silicate on HZSM-5 could improve the conversion of CH4, but had little effect on coke formation. A low temperature activation procedure including pre-reduction of the catalyst with methane prevents the zeolite lattice from being seriously destroyed by high valence state Mo species when the Mo loading is high. It was suggested that Mo2C species detected by XRD spectra was the active phase for CH4 aromatization.