1000 resultados para magnetic superlattice


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical treatment of magnetic levels formed in the minibands of superlattices under an in-plane magnetic field is discussed. It is found that the results of semiclassical and envelope-function treatments based on miniband structures are in good agreement with the results calculated strictly by the quantum-mechanical method, so long as the critical parameter 2hc/eBL2 is larger than 1. The wave functions obtained are in the nature of superlattice envelope functions, which are over and above the usual effective-mass envelope functions for bulk materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic multilayers [NixFe100-x/Mo-30] grown by dc-magnetron sputtering were investigated by x-ray small-angle reflection and high-angle diffraction. Structural parameters of the multilayers such as the superlattice periods, the interfacial roughness, and interplane distance were obtained. It was found that for our NixFe100-x/Mo system, the Mo layer has bcc structure with [110] preferential orientation, while the preferential orientation of the NixFe100-x layer changes from a fee structure with [111] preferential orientation to a bcc structure with [110] preferential orientation with decreasing values of x. An intermixing layer located in the interlayer region between the NixFe100-x and Mo layers exists in the multilayers, and its thickness is almost invariant with respect to an increase of Mo layer thickness and/or a decrease of x in the region of x greater than or equal to 39. The thickness of the intermixing layer falls to zero when x less than or equal to 23.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed the transition from static to dynamic electric field domain formation induced by a transverse magnetic field and the sample temperature in a doped GaAs/AlAs superlattice. The observations can be very well explained by a general analysis of instabilities and oscillations of the sequential tunnelling current in superlattices based solely on the magnitude of the negative differential resistance region in the tunnelling characteristic of a single barrier. Both increasing magnetic field and sample temperature change the negative differential resistance and cause the transition between static and dynamic electric field domain formation. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we use magnetic resonant x-ray diffraction to study the magnetic properties of a 1.5 mu m EuTe film and an EuTe/PbTe superlattice (SL). The samples were grown by molecular beam epitaxy on (111) oriented BaF(2) substrates. The measurements were made at the Eu L(2) absorption edge, taking profit of the resonant enhancement of more than two orders in the magnetically diffracted intensity. At resonance, high counting rates above 11000 cps were obtained for the 1.5 gm EuTe film, allowing to check for the type II antiferromagnetic order of EuTe. An equal population of the three possible in-plane magnetic domains was found. The EuTe/PbTe SL magnetic peak showed a satellite structure, indicating the presence of magnetic correlations among the 5 ML (monolayers) EuTe layers across the 15 ML PbTe non-magnetic spacers. The temperature dependence of the integrated intensities of the film and the SL yielded different Neel temperatures T(N). The lower T(N) for the SL is explained considering the higher influence of the surface atoms, with partial bonds lost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superlattices formed of two antagonic characteristics have been broadly studied in literature mainly in order to clarify the effects of proximity and interface interactions. Here, we present a study of superlattice introducing an insulator between each superconducting and ferromagnetic layer. The electrical insulator STO, YBCO and LCMO layer are deposited by PLD method. The samples with STO show more intergrowth surface morphology, which favors the application providing better contacts between the grains. The magnetic measurements indicated higher Tc values and high anisotropy for SLs with STO, which is dependent on the relative thickness of LCMO and YBCO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, using first-principles electronic structure calculations within the spin density functional theory, alternated magnetic and non-magnetic layers of rutile-CrO2 and rutile-SnO2 respectively, in a (CrO2) n (SnO2) n superlattice (SL) configuration, with n being the number of monolayers which are considered equal to 1, 2, ..., 10 are studied. A half-metallic behavior is observed for the (CrO2) n (SnO2) n SLs for all values of n. The ground state is found to be FM with a magnetic moment of 2 μB per chromium atom, and this result does not depend on the number of monolayers n. As the FM rutile-CrO2 is unstable at ambient temperature, and known to be stabilized when on top of SnO2, the authors suggest that (CrO2) n (SnO2) n SLs may be applied to spintronic technologies since they provide efficient spin-polarized carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.