969 resultados para luteinizing hormone receptor
Resumo:
Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.
Resumo:
Human recombinant growth hormone (hGH) has been used to treat short stature in several different conditions, but considerable inter-individual variation in short- and long-term growth response exists. Pharmacogenomics can provide important insights into hGH therapy. The GH receptor (GHR) is the first key molecule mediating GH action. In the past 3 years, a common GHR polymorphism reflecting the presence (GHRf1) or absence (GHRd3) of exon 3 has been under intensive investigation regarding its influence on the response to hGH therapy. Studies that evaluated response to GH treatment determined by these two GHR isoforms in children with GH deficiency, girls with Turner syndrome, children born small for gestational age and patients with acromegaly showed that patients carrying the GHRd3 allele demonstrated a greater GH sensitivity than patients homozygous for the GHRf1 allele. Other studies presented contradictory data, however, which may be caused by confounding factors such as small sample sizes and differences in experimental design. This GHR exon 3 genotype is the first identified genetic factor found to modulate the individual response to GH therapy. This article reviews the historical aspects and pharmacogenetic studies published to date in relation to this GHR polymorphism. The analyses of present and future validation studies may define the use of this and other polymorphisms in clinical practice, moving from pharmacogenetics to routine application and allowing individualization of hGH doses to optimize final outcome. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Purpose The third-generation nonsteroidal aromatase inhibitors (AIs) are increasingly used as adjuvant and first-line advanced therapy for postmenopausal, hormone receptor-positive (HR +) breast cancer. Because many patients subsequently experience progression or relapse, it is important to identify agents with efficacy after AI failure. Materials and Methods Evaluation of Faslodex versus Exemestane Clinical Trial (EFECT) is a randomized, double-blind, placebo controlled, multicenter phase III trial of fulvestrant versus exemestane in postmenopausal women with HR + advanced breast cancer (ABC) progressing or recurring after nonsteroidal AI. The primary end point was time to progression (TTP). A fulvestrant loading-dose (LD) regimen was used: 500 mg intramuscularly on day 0, 250 mg on days 14, 28, and 250 mg every 28 days thereafter. Exemestane 25 mg orally was administered once daily. Results A total of 693 women were randomly assigned to fulvestrant (n = 351) or exemestane ( n = 342). Approximately 60% of patients had received at least two prior endocrine therapies. Median TTP was 3.7 months in both groups ( hazard ratio = 0.963; 95% CI, 0.819 to 1.133; P = .6531). The overall response rate ( 7.4% v 6.7%; P = .736) and clinical benefit rate ( 32.2% v 31.5%; P = .853) were similar between fulvestrant and exemestane respectively. Median duration of clinical benefit was 9.3 and 8.3 months, respectively. Both treatments were well tolerated, with no significant differences in the incidence of adverse events or quality of life. Pharmacokinetic data confirm that steady-state was reached within 1 month with the LD schedule of fulvestrant. Conclusion Fulvestrant LD and exemestane are equally active and well-tolerated in a meaningful proportion of postmenopausal women with ABC who have experienced progression or recurrence during treatment with a nonsteroidal AI.
Resumo:
Glucose-dependent insulinotropic peptide receptor (GIPR) and LHCGR are G-protein-coupled receptors with a wide tissue expression pattern. Aberrant expression of these receptors has rarely been demonstrated in adult sporadic adrenocortical tumors with a lack of data on pediatric tumors. We quantified the GIPR and LHCGR expression in a large cohort of 55 patients (25 children and 30 adults) with functioning and non-functioning sporadic adrenocortical tumors. Thirty-eight tumors were classified as adenomas whereas 17 were carcinomas. GIPR, and LHCGR expression were analyzed by real-time PCR and normal human pancreatic and testicular tissue samples were used as positive controls. Mean expression values were determined by fold increase in comparison with a normal adrenal pool. GIPR mRNA levels were significantly higher in adrenocortical carcinomas than in adenomas from both pediatric and adult groups. LHCGR expression was similar in both carcinomas and adenomas from the pediatric group but significantly lower in carcinomas than in adenomas from the adult group (median 0.06 and 2.3 respectively, P<0.001). GIPR was detected by immunohistochemistry in both pediatric and adult tumors. Staining and real-time PCR results correlated positively only when GIPR in RN A levels were increased at least two-fold in comparison with normal adrenal expression levels. In Conclusion, GIPR overexpression was observed in pediatric and adult adrenocortical tumors and very low levels of LHCGR expression were found in all adult adrenocortical carcinomas.
Resumo:
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)]; transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20 mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated whether the four gonadorelin products that are commercially available in the United States produce comparable ovulation responses in lactating cows. Dairy cows at 7 d after last gonadotropin-releasing hormone (GnRH) treatment of Ovsynch (Day 7), with a corpus luteum (CL) >= 15 mm and at least one follicle >= 10 mm, were evaluated for response to GnRH treatment. Selected cows were randomized to receive (100 mu g; im): (1) Cystorelin (n = 146): (2) Factrel (n = 132): (3) Fertagyl (n = 140); or (4) Ovacyst (n = 140). On Day 14, cows were examined for Ovulation by detection of an accessory CL. Circulating luteinizing hormone (LH) concentrations were also evaluated in some cows after treatment with 100 mu g (n = 10 per group) or 50 mu g (n = 5 per group) GnRH. Statistical analyses were performed with the procedures MIXED and GLIMMIX of the SAS program. Percentage of cows ovulating differed (P < 0.01) among groups, with that for Factrel being lower (55.3%) than that for Cystorelin (76.7%), Fertagyl (73.6%), or Ovacyst (85.0%), There was no effect of batch, parity, or follicle size on ovulation response. but increasing body condition score decreased Ovulation response. There was a much greater LH release in cows treated with 100 mu g than in those treated with 50 mu g, but there were no detectable differences among products in time to LH peak, peak LH concentration, or area under the LH curve and no treatment effects nor treatment by time interactions on circulating LH profile. Thus, ovulation response to Factrel on Day 7 of the cycle was lower than that for other commercial GnRH products, although a definitive mechanism for this difference between products was not demonstrated. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
Concentrations of follicle-stimulating hormone (FSH) have an important role in multiple ovulation. An association has been reported between mutations in the FSH receptor (FSHR) in a family with Increased twinning frequency. We sequenced the transmembrane region of FSHR (located on chromosome 2) in 21 unrelated mothers of dizygotic twins and found no differences to the published sequence. A linkage study of 183 sister pairs and trios, in which all sisters had given birth to spontaneous dizygotic twins, excluded linkage to this region of chromosome 2. Wa conclude that mutations in FSHR are not a common cause of familial dizygotic twinning.
Resumo:
Bone remodeling during tooth movement is regulated by local and systemic factors. Two regulators of bone metabolism are growth hormone (GH) and insulin-like growth factor-I (IGF-1). Their effects are mediated via binding to GH receptor (GHR) and IGF-I receptor (IGF-IR) in target tissues. Corticosteroids may affect the activity of these growth factors. This study examined the effect of prednisolone on GHR and IGF-IR expression in dental tissues following orthodontic tooth movement. The corti ticosteroid-treated group (N = 6) was administered prednisolone ( 1 mg/kg,) daily and the control group (N = 6) received equivalent volumes of saline. An orthodontic force (30 g) was applied to the maxillary first molar. Animals were sacrificed 12 days postappliance insertion. Sagittal sections of the first molar were stained for GHR and IGF-IR immunoreactivity. GHR and IGF-IR cell counts were elevated following appliance-treatment. Orthodontic tooth movement appeared to up-regulate GHR and IGF-IR immunoreactivity, but this up-regulation was reduced following prednisolone treatment. The suppression of GHR and IGF-I immunoreactivity in steroid-treated animals infers the mechanism whereby bone resorption and deposition, necessary for orthodontic tooth movement, may be inhibited by prednisolone. However, at 12 days postappliance insertion. no difference in orthodontic tooth movement was observed following low-dose prednisolone treatment.
Resumo:
The extracellular loop 3 (ECL3) of the mammalian gonadotropin-releasing hormone receptor (GnRH-R) contains an acidic amino acid (Glu(301) in the mouse GnRH-R,) that confers agonist selectivity for Are in mammalian GnRH. It is proposed that a specific conformation of ECL3 is necessary to orientate the carboxyl side chain of the acidic residue for interaction with Arg(8) of GnRH, which is supported by decreased affinity for Arg(8) GnRH but not Gln(8) GnRH when an adjacent Pro is mutated to Ala. To probe the structural contribution of the loop domain to the proposed presentation of the carboxyl side chain, we synthesized a model peptide (CGPEMLNRVSEPGC) representing residues 293-302 of mouse ECL3, where Cys and Gly residues are added symmetrically at the N and C termini, respectively, allowing the introduction of a disulfide bridge to simulate the distances at which the ECL3 is tethered to the transmembrane domains 6 and 7 of the receptor. The ability of the ECL3 peptide to bind GnRH with low affinity was demonstrated by its inhibition of GnRH stimulation of inositol phosphate production in cells expressing the GnRH-R. The CD bands of the ECL3 peptides exhibited a superposition of predominantly unordered structure and partial contributions from beta-sheet structure. Likewise, the analysis of the amide I and amide III bands from micro-Raman and FT Raman experiments revealed mainly unordered conformations of the cyclic and of the linear peptide. NMR data demonstrated the presence of a beta-hairpin among an ensemble of largely disordered structures in the cyclic peptide. The location of the turn linking the two strands of the hairpin was assigned to the three central residues L-296, N-297, and R-298. A small population of structured species among an ensemble of predominantly random coil conformation suggests that the unliganded receptor represents a variety of structural conformers, some of which have the potential to make contacts with the ligand. We propose a mechanism of receptor activation whereby binding of the agonist to the inactive receptor state induces and stabilizes a particular structural state of the loop domain, leading to further conformational rearrangements across the transmembrane domain and signal propagating interaction with G proteins. Interaction of the Glu(301) of the receptor with Arg(8) of GnRH induces a folded configuration of the ligand. Our proposal thus suggests that conformational changes of both ligand and receptor result from this interaction.