989 resultados para laser-ablation split-stream (LASS)
Resumo:
Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.
Resumo:
We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.
Resumo:
Laser ablation processes in liquid benzene, toluene and carbon disulphide have been investigated by pulsed photoacoustic technique using 532 nm radiation from a frequency doubled Q-switched Nd:YAG laser. The nature of variation of photoacoustic signal amplitude with laser energy clearly indicates that different phenomena are involved in the generation of photoacoustic effect and these are discussed in detail. Our results suggest multiphoton induced photofragmentation as the most plausible interaction process occurring during laser ablation in these liquids.
Resumo:
Coral growth rate can be affected by environmental parameters such as seawater temperature, depth, and light intensity. The natural reef environment is also disturbed by human influences such as anthropogenic pollutants, which in Barbados are released close to the reefs. Here we describe a relatively new method of assessing the history of pollution and explain how these effects have influenced the coral communities off the west coast of Barbados. We evaluate the relative impact of both anthropogenic pollutants and natural stresses. Sclerochronology documents framework and skeletal growth rate and records pollution history (recorded as reduced growth) for a suite of sampled Montastraea annularis coral cores. X-radiography shows annual growth band patterns of the corals extending back over several decades and indicates significantly lower growth rate in polluted sites. Results using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the whole sample (aragonite, organic matter, trapped particulate matter, etc.), have shown contrasting concentrations of the trace elements (Cu, Sn, Zn, and Pb) between corals at different locations and within a single coral. Deepwater corals 7 km apart, record different levels of Pb and Sn, suggesting that a current transported the metal pollution in the water. In addition, the 1995 hurricanes are associated with anomalous values for Sn and Cu from most sites. These are believed to result from dispersion of nearshore polluted water. We compared the concentrations of trace elements in the coral growth of particular years to those in the relevant contemporaneous seawater. Mean values for the concentration factor in the coral, relative to the water, ranged from 10 for Cu and Ni to 2.4 and 0.7 for Cd and Zn, respectively. Although the uncertainties are large (60-80%), the coral record enabled us to demonstrate the possibility of calculating a history of seawater pollution for these elements from the 1940s to 1997. Our values were much higher than those obtained from analysis of carefully cleaned coral aragonite; they demonstrate the incorporation of more contamination including that from particulate material as well as dissolved metals.
Resumo:
Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.
Resumo:
Titanium surface texture and chemistry modification successfully improves the host response and consequently the bone-to-implant contact surrounding dental implants. The aim of the present study was to investigate, using histomorphometrical-analysis, the effects of titanium surface modification by laser-ablation (Nd:YAG) followed by thin chemical deposition of HA. Forty-eight rabbits received one implant by tibiae of AS-machined (MS), laser-modified (LMS), or biomimetic hydroxyapatite-coated (HA) surface. Bone-to-implant contact (BIC) and bone area (BBT) were evaluated after 4, 8, and 12 weeks, at cortical and cancellous regions. Average BIC in the cortical region was higher (P < 0.001) on the LMS and HA implants for all periods, with no differences between LMS and HA. For the cancellous area, the LMS and HA implants showed higher (P < 0.01) BIC than MS at the initial periods. The LMS and HA showed similar values in the cortical region, but a tendency of higher values for HA in the cancellous region was observed in all periods. For the BBT, the differences were found only between HA and MS after 4 weeks in the cortical region (P < 0.05), and after 12 weeks in the cancellous area (P < 0.05). Our results showed that HA biomimetic coating preceded by laser treatment induced the contact osteogenesis and allowed the formation of a more stable boneimplant interface, even in earlier periods. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
By means of IR spectroscopy, we determined the teeth ablation mechanism by an Er:YAG laser oscillating at 2.94 mum. Ejected dental material, ablated by the laser from human teeth, was deposited on an IR window and the absorption spectra were measured in the range 2500-20,000 nm. Sound teeth were used, and the corresponding film spectra were compared to spectra obtained by traditional methods. The films spectra obtained do not differ appreciably from those obtained by the traditional method for sound teeth, indicating that the material ejected by an Er:YAG represents the tooth condition.The obtained results confirm that a spectroscopic analysis of a tooth treated with an Er:YAG laser can be done measuring the absorbance of a film composed of ejected material without the need to slice it. In addition, we could determine that the laser absorption occurs mainly by the interstitial water, and the temperature elevation of the ejected material does not exceed 60degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Indium-tin oxide nanowires were deposited by excimer laser ablation onto catalyst-free oxidized silicon substrates at a low temperature of 500 degrees C in a nitrogen atmosphere. The nanowires have branches with spheres at the tips, indicating a vapor-liquid-solid (VLS) growth. The deposition time and pressure have a strong influence on the areal density and length of the nanowires. At the earlier stages of growth, lower pressures promote a larger number of nucleation centers. With the increase in deposition time, both the number and length of the wires increase up to an areal density of about 70 wires/mu m(2). After this point all the material arriving at the substrate is used for lengthening the existing wires and their branches. The nanowires present the single-crystalline cubic bixbyite structure of indium oxide, oriented in the [100] direction. These structures have potential applications in electrical and optical nanoscale devices.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]
Resumo:
Objective To evaluate the perinatal outcomes in hydropic fetuses with congenital microcystic pulmonary lesions that underwent percutaneous, invasive, laser therapy. Method This retrospective study reviews the literature and our experience between 2004 and 2010. Characteristics of the cystic lung lesions, liquor volume (presence of polyhydramnios or not), localization of ablation (vascular vs interstitial) and gestational age at which the procedure was performed were related to outcome (survival). Results In total, 16 fetuses with congenital lung lesions underwent invasive percutaneous laser ablation, seven performed in our center and nine published cases. Survival rate was higher in fetuses with a subsequent postnatal diagnosis of bronchopulmonary sequestration (87.5%) compared with congenital adenomatoid malformation (28.6%; p?=?0.04). The technique of vascular ablation was more successful (100%) than interstitial ablation (25.0%, p?<?0.01). Conclusion Percutaneous vascular laser ablation seems to be effective for bronchopulmonary sequestration in hydropic fetuses. Outcomes were worst following interstitial ablation for microcystic congenital adenomatoid with hydrops. (C) 2012 John Wiley & Sons, Ltd.