61 resultados para kml
Resumo:
The spectacular advances computer science applied to geographic information systems (GIS) in recent times has favored the emergence of several technological solutions. These developments have given rise to enormous opportunities for digital management of the territory. Among the technological solutions, the most famous Google Maps offers free online mapping dynamic exhaustive of the Maps. In addition to meet the enormous needs of urban indicators geotagged information, we did work on this project “Integration of an urban observatory on Google Maps.” The problem of geolocation in the urban observatory is particularly relevant in the sense that there is currently no data (descriptive and geographical) reliable on the urban sector; we must stick to extrapolate from data old and obsolete. This helps to curb the effectiveness of urban management to make difficult investment programming and to prevent the acquisition of knowledge to make cities engines of growth. The use of a geolocation tool coupled to the data would allow better monitoring of indicators Our project's objective is to develop an interactive map server (WebMapping) which map layer is formed from the resources of the Google Maps servers and match information from the field to produce maps of urban equipment and infrastructure of a city data to the client's request To achieve this goal, we will participate in a study of a GPS location of strategic sites in our core sector (health facilities), on the other hand, using information from the field, we will build a postgresql database that will link the information from the field to map from Google Maps via KML scripts and PHP appropriate. We will limit ourselves in our work to the city of Douala Cameroon with the sectors of health facilities with the possibility of extension to other areas and other cities. Keywords: Geographic Information System (GIS), Thematic Mapping, Web Mapping, data mining, Google API.
Resumo:
Seamounts and knolls are 'undersea mountains', the former rising more than 1000 m from the sea floor. These features provide important habitats for aquatic predators, demersal deep-sea fish and benthic invertebrates. However most seamounts have not been surveyed and their numbers and locations are not well known. Previous efforts to locate and quantify seamounts have used relatively coarse bathymetry grids. Here we use global bathymetric data at 30 arc-second resolution to identify seamounts and knolls. We identify 33,452 seamounts and 138,412 knolls, representing the largest global set of identified seamounts and knolls to date. We compare estimated seamount numbers, locations, and depths with validation sets of seamount data from New Zealand and Azores. This comparison indicates the method we apply finds 94% of seamounts, but may overestimate seamount numbers along ridges and in areas where faulting and seafloor spreading creates highly complex topography. The seamounts and knolls identified herein are significantly geographically biased towards areas surveyed with ship-based soundings. As only 6.5% of the ocean floor has been surveyed with soundings it is likely that new seamounts will be uncovered as surveying improves. Seamount habitats constitute approximately 4.7% of the ocean floor, whilst knolls cover 16.3%. Regional distribution of these features is examined, and we find a disproportionate number of productive knolls, with a summit depth of <1.5 km, located in the Southern Ocean. Less than 2% of seamounts are within marine protected areas and the majority of these are located within exclusive economic zones with few on the High Seas. The database of seamounts and knolls resulting from this study will be a useful resource for researchers and conservation planners.