865 resultados para kernel estimator


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: O vírus da dengue é transmitido pela picada do mosquito Aedes aegypti e, o atual programa de controle não atinge o objetivo de impedir sua transmissão. Este trabalho objetivou analisar a relação entre a distribuição espaço-temporal de casos de dengue e os indicadores larvários no município de Tupã, de janeiro de 2004 a dezembro de 2007. MÉTODOS: Foram construídos indicadores larvários por quarteirão e totalidade do município. Utilizou-se o método cross-lagged correlation para avaliar a correlação entre casos de dengue e indicadores larvários. Foi utilizado estimador kernel para análise espacial. RESULTADOS: A correlação cruzada defasada entre casos de dengue e indicadores larvários foi significativa. Os mapas do estimador Kernel da positividade de recipientes indicam uma distribuição heterogênea, ao longo do período estudado. Nos dois anos de transmissão, a epidemia ocorreu em diferentes regiões. CONCLUSÕES: Não ficou evidenciada relação espacial entre infestação larvária e ocorrência de dengue. A incorporação de técnicas de geoprocessamento e análise espacial no programa, desde que utilizados imediatamente após a realização das atividades, podem contribuir com as ações de controle, indicando os aglomerados espaciais de maior incidência.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the performance analysis of separation of mutually independent sources in nonlinear models. The nonlinear mapping constituted by an unsupervised linear mixture is followed by an unknown and invertible nonlinear distortion, are found in many signal processing cases. Generally, blind separation of sources from their nonlinear mixtures is rather difficult. We propose using a kernel density estimator incorporated with equivariant gradient analysis to separate the sources with nonlinear distortion. The kernel density estimator parameters of which are iteratively updated to minimize the output independence expressed as a mutual information criterion. The equivariant gradient algorithm has the form of nonlinear decorrelation to perform the convergence analysis. Experiments are proposed to illustrate these results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bahadur representation and its applications have attracted a large number of publications and presentations on a wide variety of problems. Mixing dependency is weak enough to describe the dependent structure of random variables, including observations in time series and longitudinal studies. This note proves the Bahadur representation of sample quantiles for strongly mixing random variables (including ½-mixing and Á-mixing) under very weak mixing coe±cients. As application, the asymptotic normality is derived. These results greatly improves those recently reported in literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel nonparametric density estimator and a new data-driven bandwidth selection method with excellent properties. The approach is in- spired by the principles of the generalized cross entropy method. The pro- posed density estimation procedure has numerous advantages over the tra- ditional kernel density estimator methods. Firstly, for the first time in the nonparametric literature, the proposed estimator allows for a genuine incor- poration of prior information in the density estimation procedure. Secondly, the approach provides the first data-driven bandwidth selection method that is guaranteed to provide a unique bandwidth for any data. Lastly, simulation examples suggest the proposed approach outperforms the current state of the art in nonparametric density estimation in terms of accuracy and reliability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many unit root and cointegration tests require an estimate of the spectral density function at frequency zero at some process. Kernel estimators based on weighted sums of autocovariances constructed using estimated residuals from an AR(1) regression are commonly used. However, it is known that with substantially correlated errors, the OLS estimate of the AR(1) parameter is severely biased. in this paper, we first show that this least squares bias induces a significant increase in the bias and mean-squared error of kernel-based estimators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive algorithm is developed to select significant kernels one at time, and the kernel width of the selected kernel is then tuned using the gradient descent algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing very sparse kernel density estimators with competitive accuracy to existing kernel density estimators.