1000 resultados para kallikrein-kinin system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the responses to vasoactive kinin peptides are mediated through the activation of two receptors termed bradykinin receptor B1 (B1R) and B2 (B2R). The physiologically prominent B2R subtype has certainly been the subject of more intensive efforts in structure-function studies and physiological investigations. However, the B1R activated by a class of kinin metabolites has emerged as an important subject of investigation within the study of the kallikrein-kinin system (KKS). Its inducible character under stress and tissue injury is therefore a field of major interest. Although the KKS has been associated with cardiovascular regulation since its discovery at the beginning of the last century, less is known about the B1R and B2R regulation in cardiovascular diseases like hypertension, myocardial infarction (MI) and their complications. This mini-review will summarize our findings on B1R and B2R regulation after induction of MI using a rat model. We will develop the hypothesis that differences in the expression of these receptors may be associated with a dual pathway of the KKS in the complex mechanisms of myocardial remodeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kallikrein-kinin system exerts cardioprotective effects against pathological hypertrophy. These effects are modulated mainly via B(2) receptor activation. Chronic physical exercise can induce physiological cardiac hypertrophy characterized by normal organization of cardiac structure. Therefore, the aim of this work was to verify the influence of kinin B(2) receptor deletion on physiological hypertrophy to exercise stimulus. Animals were submitted to swimming practice for 5 min or for 60 min, 5 days a week, during 1 month and several cardiac parameters were evaluated. Results showed no significantly difference in heart weight between both groups, however an increased left ventricle weight and myocyte diameter were observed after the 60 min swimming protocol, which was more pronounced in B(2)(-/-) mice. In addition, sedentary B(2)(-/-) animals presented higher left ventricle mass when compared to wild-type (WT) mice. An increase in capillary density was observed in exercised animals, however the effect was less pronounced in B(2)(-/-) mice. Collagen, a marker of pathological hypertrophy, was increased in B(2)(-/-) mice submitted to swimming protocol, as well as left ventricular thickness, suggesting that these animals do not respond with physiological hypertrophy for this kind of exercise. In conclusion, our data suggest an important role for the kinin B(2) receptor in physiological cardiac hypertrophy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PM) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PM binding to cell- or ECM-bound-HK and PM activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the effects of chronic methionine intake on bradykinin (BK)-relaxation. Vascular reactivity experiments were performed on carotid rings from male Wistar rats. Treatment with methionine (0.1, 1 or 2 g kg(-1) per day) for 8 and 16 weeks, but not for 2 and 4 weeks, reduced the relaxation induced by BK. Indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ29548, a selective thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist prevented the reduction in BK-relaxation observed in the carotid from methionine-treated rats. Conversely, AH6809, a selective prostaglandin F(2 alpha) (PGF(2 alpha)) receptor antagonist did not alter BK-relaxation in the carotid from methionine-treated rats. The nitric oxide synthase (NOS) inhibitors L-NAME, L-NNA and 7-nitroindazole reduced the relaxation induced by BK in carotids from control and methionine-treated rats. In summary, we found that chronic methionine intake impairs the endothelium-dependent relaxation induced by BK and this effect is due to an increased production of endothelial vasoconstrictor prostanoids (possibly TXA(2)) that counteracts the relaxant action displayed by the peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is considered a worldwide public health problem showing an increased prevalence in developing countries, with urgent need for new and more efficient drugs and therapies. Enalapril, an angiotensin-I converting enzyme inhibitor (ACEi), is classically used in antihypertensive therapies, however, earlier publications have shown that this drug could also have significant impact on body weight in rats as well as in humans, besides reducing blood pressure. The effect of this drug in the white adipose tissue has been neglected for long time, even considering that most components of the renin-angiotensin and kallikrein-kinin system are expressed in this tissue. Furthermore, the adipose tissue is considered today as one of the most important sites for endocrine/inflammatory regulation of appetite and energy output and AngII has been linked to the metabolism in this tissue. Therefore, we analyzed the influence of chronic enalapril treatment in normotensive rats at earlier ages, evaluating body weight, energy homeostasis, lipid profile and serum levels of the hormones leptin and insulin, in the presence of a standard or a palatable hyperlipidic diet regimen for one month. Our results show that enalapril treatment is able to reduce body fat on both diets, without alteration in serum lipid profile. Furthermore, animals receiving enalapril showed reduction in food intake, leptin level and energy intake. In summary, these findings show for the first time that the ACEi enalapril reduces body fat in young normotensive rats and highlights a novel target to treat obesity and associated diseases. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

But de l’étude L’effet antihypertenseur de la dénervation rénale chez les patients hypertendus s’explique partiellement par une augmentation de la natriurèse tubulaire. Pour étudier une contribution possible du système kallikréine-kinines (SKK) à cette natriurèse dans le rat, nous avons dosé dans le plasma et dans les tissus l’activité de la kallikréine (AK) et la concentration de la bradykinine (BK). Méthodes Pour AK, nous avons adapté et validé un essai enzymatique qui libère la para-nitroaniline à partir du tripeptide H-D-Pro-Phe-Arg-pNA ; les coefficients de variation (CV) intra-essai et inter-essai étaient inférieurs à 8 % pour AK plasmatique et tissulaire (plasma n = 6 et 13, tissu n = 4). La linéarité d’une série de dilutions confirmait la spécificité de l’essai. Le dosage de BK tissulaire se basait sur une méthode établie pour le plasma : tissus étaient homogénéisés et BK extraite et isolée par éthanol et HPLC, et finalement quantifiée par radio-immunoessai. Les CV intra- et inter-essai pour BK étaient 18 % dans le plasma (n = 8 et n = 35) et inférieurs à 16 % dans différents tissus (n = 5–8). Résultats Chez le rat mâle Wistar (n = 3), la BK plasmatique était de 8,2 ± 6,6 fmol/mL (M ± SD) et la BK tissulaire (fmol/g) variait, pour les 14 organes testés, de 14 ± 3 pour le cerveau à 521 ± 315 pour la glande sous-maxillaire. Six jours après dénervation rénale gauche, la BK rénale gauche (89 ± 9) n’était pas différente comparée à la BK rénale droite (75 ± 23). De même, l’AK était identique dans les deux reins (gauche 18,0 ± 1,5, droit 15,8 ± 1,4 μkat/g). Conclusion Un effet éventuel de la dénervation rénale unilatéral sur le SKK rénal devrait donc être bilatéral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular responses elicited by the stimulation of kinin B2 receptors in the IV cerebral ventricle paratrigeminal nucleus or in the thoracic spinal cord are similar to those observed during an exercise bout Considering that the kalikrein-kinin system (KKS) could act on the cardiovascular modulation during behavioral responses as physical exercise or stress this study evaluated the central B2 receptor densities of Wistar (W) and spontani ously hypertensive rats (SHR) after chronic moderate exercise Animals we re exercise-trained for ten weeks on a treadmill Afterwards systolic blood pressure decreased in both trained strains Animals were killed and the medulla and spinal cord extracted for B2 receptor autoradiography Trained animals were compared to their sedentary controls Sedentary groups showed specific binding sites for Hoe-140 (fmol/mg of tissue) in laminas 1 and 2 of the spinal cord nucleus of the solitary tract (NTS) area postrema (AP) spinal trigeminal tract (sp5) and paratrigeminal nucleus (Pa5) In trained W a significant increase (p<0 05) in specific binding was observed in the Pa5 (31 3%) and NTS (28 2%) Trained SHR showed a significant decrease in n ceptor density in lamina 2 (21 9%) of the thoracic spinal cord and an increase in specific binding in Pa5 (36 1%) We suggest that in the medulla chronic exercise could hyper stimulate the KKS enhancing their efficiency through the increase of B2 receptor density involving this receptor in central cardiovascular control during exercise or stress In the lamina 2 B2 receptor might be involved in the exercise-induced hypotension (C) 2010 Elsevier BV All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some components of the kinin system such as plasma kallikrein levels, the activities of tissue kallikrein (including saliva) and kininase II and the concentrations of kininogen fractions (low-molecular weight/LKg and high-molecular weight/HKg) were evaluated in the plasma of patients with thromboangiitis obliterans (TAO) presenting clinical symptoms of the condition. Twenty TAO were diagnosed by means of the traditional Shionoya and Olin criteria and later classified into non-smokers (n = 11) and active smokers (n = 9). Fifty-three normal, non-smoking/smoking individuals (control) were also studied. Kininogen levels were determined by ELISA; the activities of kallikreins and kininase II were determined using selective substrates. The levels of enzymes (kallikreins and kininase II) and protein (kininogens) were significantly higher in patients with TAO who were active smokers compared to the control groups (no matter whether control individuals were active smokers or non-smokers, P < 0.001 for all comparisons). Interestingly, regardless of the time of disease onset, a significant increase in the levels of these components of the kinin system was also observed in patients when TAO active smokers were compared with TAO ex-smokers (P < 0.01 for all analysed parameters). Activation of the kinin system in patients with TAO may indicate the involvement of vasodilatation in an attempt to control vascular changes, thereby favouring the deposition of immune complexes at the vascular level because of nicotine stimulation. Moreover, our results corroborate the idea that TAO can be an autoimmune disorder with specific mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interplay of vasoactive peptide systems is an essential determinant of blood pressure regulation in mammals. While the endothelin and the renin-angiotensin systems raise blood pressure by inducing vasoconstriction and sodium retention, the kallikrein-kinin and the natriuretic-peptide systems reduce arterial pressure by eliciting vasodilatation and natriuresis. Transgenic technology has proven to be very useful for the functional analysis of vasoactive peptide systems. As an outstanding example, transgenic rats overexpressing the mouse Ren-2 renin gene in several tissues become extremely hypertensive. Several other transgenic rat and mouse strains with genetic modifications of components of the renin-angiotensin system have been developed in the past decade. Moreover, in recent years gene-targeting technology was employed to produce mouse strains lacking these proteins. The established animal models as well as the main insights gained by their analysis are summarized in this review.