976 resultados para kallikrein serine proteases
Resumo:
Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).
Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.
Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.
Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.
Resumo:
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Resumo:
Background: Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites. Methodology and Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been observed. Conclusions and Significance: Our study provides further insight into the diversity of serine protease isoforms present within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites.
Resumo:
Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.
Resumo:
Sunflower trypsin inhibitor-1 (SFI-1), a natural 14-residue cyclic peptide, and some of its synthetic acyclic variants are potent protease inhibitors displaying peculiar inhibitory profiles. Here we describe the synthesis and use of affinity sorbents prepared by coupling SFTI-1 analogues to agarose resin. Chymotrypsinand trypsin-like proteases could then be selectively isolated from pancreatin; similarly, other proteases were obtained from distinct biological sources. The binding capacity of [Lys5]-SFTI-1-agarose for trypsin was estimated at over 10 mg/mL of packed gel. SFTI-1-based resins could find application either to improve the performance of current purification protocols or as novel protease-discovery tools in different areas of biological investigation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study reports the isolation and biochemical characterization of two different serine proteases from Bothrops pirajai snake venom, thus providing a comparative analysis of the enzymes. The isolation process consisted of three consecutive chromatographic steps (Sephacryl S-200, Benzamidine Sepharose and C2/C18), resulting in two serine proteases, named BpirSP27 and BpirSP41 after their molecular masses by mass spectrometry (27,121 and 40,639 Da, respectively). Estimation by SDS-PAGE under denaturing conditions showed that, when deglycosylated with PNGase F, BpirSP27 and BpirSP41 had their molecular masses reduced by approximately 15 and 42%, respectively. Both are acidic enzymes, with pI of approximately 4.7 for BpirSP27 and 3.7 for BpirSP41, and their N-terminal amino acid sequences showed 57% identity to each other, with high similarity to the sequences of other snake venom serine proteases (SVSPs). The enzymes showed different actions on bovine fibrinogen, with BpirSP27 acting preferentially on the B beta chain and BpirSP41 on both A alpha and B beta chains. The two serine proteases were also able to degrade fibrin and blood clots in vitro depending on the doses and incubation periods, with higher results for BpirSP41. Both enzymes coagulated the human plasma in a dose-dependent manner, and BpirSP41 showed a higher coagulant potential, with minimum coagulant dose (MCD) of similar to 3.5 mu g versus 20 mu g for BpirSP27. The enzymes were capable of hydrolyzing different chromogenic substrates, including S-2238 for thrombin-like enzymes, but only BpirSP27 acted on the substrate S-2251 for plasmin. They also showed high stability against variations of temperature and pH, but their activities were significantly reduced after preincubation with Cu2+ ion and specific serine protease inhibitors. In addition. BpirSP27 induced aggregation of washed platelets to a greater extent than BpirSP41. The results showed significant structural and functional differences between B. pirajai serine proteases, providing interesting insights into the structure-function relationship of SVSPs. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 A ° resolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.
Resumo:
Growing evidence suggests a prominent role of the complement system in the pathogenesis of cardio- and cerebrovascular diseases (CVD). Mannan-binding lectin-associated serine proteases (MASPs) MASP-1 and MASP-2 of the complement lectin pathway contribute to clot formation and may represent an important link between inflammation and thrombosis. MBL-associated protein MAp44 has shown cardioprotective effects in murine models. However, MAp44 has never been measured in patients with CVD and data on MASP levels in CVD are scarce. Our aim was to investigate for the first time plasma levels of MAp44 and MASP-1, -2, -3 concomitantly in patients with CVD. We performed a pilot study in 50 healthy volunteers, in stable coronary artery disease (CAD) patients with one-vessel (n = 51) or three-vessel disease (n = 53) and age-matched controls with normal coronary arteries (n = 53), 49 patients after myocardial infarction (MI) and 66 patients with acute ischaemic stroke. We measured MAp44 and MASP-1 levels by in-house time-resolved immunofluorometric assays. MASP-2 and MASP-3 levels were measured using commercial enzyme-linked immunosorbent assay kits. MASP-1 levels were highest in subacute MI patients and lowest in acute stroke patients. MASP-2 levels were lower in MI and stroke patients compared with controls and CAD patients. MASP-3 and MAp44 levels did not differ between groups. MASP or MAp44 levels were not associated with severity of disease. MASP and MAp44 levels were associated with cardiovascular risk factors including dyslipidaemia, obesity and hypertension. Our results suggest that MASP levels may be altered in vascular diseases. Larger studies are needed to confirm our results and elucidate the underlying mechanisms.
Resumo:
Neutrophil granules contain serine proteases that are central components of the antimicrobial weapons of the innate immune system. Neutrophil proteases also contribute to the amplification and resolution of inflammatory responses through defined proteolytic cleavage of mediators, cell surface receptors, and extracellular matrix proteins. In the blood and at mucosal surfaces, neutrophil serine proteases are regulated by serpins found in plasma and by non-serpin secreted inhibitors. Distinct mechanisms leading to neutrophil cell death have been described for the granule serine proteases, neutrophil elastase, cathepsin G, and proteinase-3. Granule leakage in neutrophils triggers death pathways mediated by cathepsin G and proteinase-3, and both proteases are tightly regulated by their inhibitor SERPINB1 in a cell intrinsic manner. Although stored in the same types of granules, neutrophil elastase does not significantly contribute to cell death following intracellular release from granules into the cytoplasm. However, heterozygous mutations in ELANE, the gene encoding elastase, are the cause of severe congenital neutropenia, a life-threatening condition characterized by the death of neutrophils at an early precursor stage in the bone marrow. This chapter focuses on recent work exploring the biology of clade B intracellular serpins that inhibit neutrophil serine proteases and their functions in neutrophil homeostasis and serine protease control at sites of inflammation.
Resumo:
Residue 225 in serine proteases of the chymotrypsin family is Pro or Tyr in more than 95% of nearly 300 available sequences. Proteases with Y225 (like some blood coagulation and complement factors) are almost exclusively found in vertebrates, whereas proteases with P225 (like degradative enzymes) are present from bacteria to human. Saturation mutagenesis of Y225 in thrombin shows that residue 225 affects ligand recognition up to 60,000-fold. With the exception of Tyr and Phe, all residues are associated with comparable or greatly reduced catalytic activity relative to Pro. The crystal structures of three mutants that differ widely in catalytic activity (Y225F, Y225P, and Y225I) show that although residue 225 makes no contact with substrate, it drastically influences the shape of the water channel around the primary specificity site. The activity profiles obtained for thrombin also suggest that the conversion of Pro to Tyr or Phe documented in the vertebrates occurred through Ser and was driven by a significant gain (up to 50-fold) in catalytic activity. In fact, Ser and Phe are documented in 4% of serine proteases, which together with Pro and Tyr account for almost the entire distribution of residues at position 225. The unexpected crucial role of residue 225 in serine proteases explains the evolutionary selection of residues at this position and shows that the structural determinants of protease activity and specificity are more complex than currently believed. These findings have broad implications in the rational design of enzymes with enhanced catalytic properties.
Resumo:
Residue 225 in serine proteases is typically Pro or Tyr and specifies an important and unanticipated functional aspect of this class of enzymes. Proteases with Y225, like thrombin, are involved in highly specialized functions like blood coagulation and complement that are exclusively found in vertebrates. In these proteases, the catalytic activity is enhanced allosterically by Na+ binding. Proteases with P225, like trypsin, are typically involved in digestive functions and are also found in organisms as primitive as eubacteria. These proteases have no requirement for Na+ or other monovalent cations. The molecular origin of this physiologically important difference is remarkably simple and is revealed by a comparison of the Na+ binding loop of thrombin with the homologous region of trypsin. The carbonyl O atom of residue 224 makes a key contribution to the coordination shell of the bound Na+ in thrombin, but is oriented in a manner incompatible with Na+ binding in trypsin because of constraints imposed by P225 on the protein backbone. Pro at position 225 is therefore incompatible with Na+ binding and is a direct predictor of the lack of allosteric regulation in serine proteases. To directly test this hypothesis, we have engineered the thrombin mutant Y225P. This mutant has lost the ability to bind Na+ and behaves like the allosteric slow (Na(+)-free) form. The Na(+)-induced allosteric regulation also bears on the molecular evolution of serine proteases. A strong correlation exists between residue 225 and the codon used for the active site S195. Proteases with P225 typically use a TCN codon for S195, whereas proteases with Y225 use an AGY codon. It is proposed that serine proteases evolved from two main lineages: (i) TCN/P225 with a trypsin-like ancestor and (ii) AGY/Y225 with a thrombin-like ancestor. We predict that the Na(+)-induced allosteric regulation of catalytic activity can be introduced in the TCN/P225 lineage using the P225Y replacement.
Resumo:
Many serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C,TMPRSS2, hepsin, matriptase/ MT-SPI, dipepticlylpepticlase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.