938 resultados para k-Error linear complexity
Resumo:
Enhancement of the photoacoustic signal from condensed materials by several folds is achieved by the introduction of a liquid with high vapor pressure in the photoacoustic cell. The enhancement is especially marked for low absorption coefficients and high chopping frequencies. Typically the enhancement is two to nine times in the presence of diethyl ether at 293 K. A linear relationship is observed between the enhancement and the vapor pressure of the liquid.
Resumo:
A Field Programmable Gate Array (FPGA) based hardware accelerator for multi-conductor parasitic capacitance extraction, using Method of Moments (MoM), is presented in this paper. Due to the prohibitive cost of solving a dense algebraic system formed by MoM, linear complexity fast solver algorithms have been developed in the past to expedite the matrix-vector product computation in a Krylov sub-space based iterative solver framework. However, as the number of conductors in a system increases leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products present a time bottleneck, especially for ill-conditioned system matrices. In this work, an FPGA based hardware implementation is proposed to parallelize the iterative matrix solution for multiple RHS vectors in a low-rank compression based fast solver scheme. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple conductors in a Ball Grid Array (BGA) package. Speed-ups up to 13x over equivalent software implementation on an Intel Core i5 processor for dense matrix-vector products and 12x for QR compressed matrix-vector products is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board.
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.
Resumo:
In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016
Resumo:
Capacitance-voltage (C-V) characteristics of lead zirconate titanate (PZT) thin films with a thickness of 130 nm were measured between 300 and 533 K. The transition between ferroelectric and paraelectric phases was revealed to be of second order in our case, with a Curie temperature at around 450 K. A linear relationship was found between the measured capacitance and the inverse square root of the applied voltage. It was shown that such a relationship could be fitted well by a universal expression of C/A = k(V+V(0))(-1/2) and that this expression could be derived by expanding the Landau-Devonshire free energy at an effective equilibrium position of the Ti/Zr ion in a PZT unit cell. By using the derived equations in this work, the free energy parameters for an individual material can be obtained solely from the corresponding C-V data, and the temperature dependences of both remnant polarization and coercive voltage are shown to be in quantitative agreement with the experimental data.
Resumo:
The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixedrank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks. © 2011 Gilles Meyer, Silvere Bonnabel and Rodolphe Sepulchre.
Resumo:
Following the idea of Xing et al., we investigate a general method for constructing families of pseudorandom sequences with low correlation and large linear complexity from elliptic curves over finite fields in this correspondence. With the help of the tool of exponential sums on elliptic curves, we study their periods, linear complexities, linear complexity profiles, distributions of r-patterns, periodic correlation, partial period distributions, and aperiodic correlation in detail. The results show that they have nice randomness.
Resumo:
Photoluminescence studies on porous silicon show that there are luminescence centers present in the surface states. By taking photoluminescence spectra of porous silicon with respect to temperature, a distinct peak can be observed in the temperature range 100-150 K. Both linear and nonlinear relationships were observed between excitation laser power and the photoluminescence intensity within this temperature range. In addition, there was a tendency for the photoluminescence peak to red shift at low temperature as well as at low excitation power. This is interpreted as indicating that the lower energy transition becomes dominant at low temperature and excitation power. The presence of these luminescence centers can be explained in terms of porous silicon as a mixture of silicon clusters and wires in which quantum confinement along with surface passivation would cause a mixing of Gamma and X band structure between the surface states and the bulk. This mixing would allow the formation of luminescence centers.
Resumo:
The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
En aquesta tesi es solucionen problemes de visibilitat i proximitat sobre superfícies triangulades considerant elements generalitzats. Com a elements generalitzats considerem: punts, segments, poligonals i polígons. Les estrategies que proposem utilitzen algoritmes de geometria computacional i hardware gràfic. Comencem tractant els problemes de visibilitat sobre models de terrenys triangulats considerant un conjunt d'elements de visió generalitzats. Es presenten dos mètodes per obtenir, de forma aproximada, mapes de multi-visibilitat. Un mapa de multi-visibilitat és la subdivisió del domini del terreny que codifica la visibilitat d'acord amb diferents criteris. El primer mètode, de difícil implementació, utilitza informació de visibilitat exacte per reconstruir de forma aproximada el mapa de multi-visibilitat. El segon, que va acompanyat de resultats d'implementació, obté informació de visibilitat aproximada per calcular i visualitzar mapes de multi-visibilitat discrets mitjançant hardware gràfic. Com a aplicacions es resolen problemes de multi-visibilitat entre regions i es responen preguntes sobre la multi-visibilitat d'un punt o d'una regió. A continuació tractem els problemes de proximitat sobre superfícies polièdriques triangulades considerant seus generalitzades. Es presenten dos mètodes, amb resultats d'implementació, per calcular distàncies des de seus generalitzades sobre superfícies polièdriques on hi poden haver obstacles generalitzats. El primer mètode calcula, de forma exacte, les distàncies definides pels camins més curts des de les seus als punts del poliedre. El segon mètode calcula, de forma aproximada, distàncies considerant els camins més curts sobre superfícies polièdriques amb pesos. Com a aplicacions, es calculen diagrames de Voronoi d'ordre k, i es resolen, de forma aproximada, alguns problemes de localització de serveis. També es proporciona un estudi teòric sobre la complexitat dels diagrames de Voronoi d'ordre k d'un conjunt de seus generalitzades en un poliedre sense pesos.
Resumo:
This paper presents a software-based study of a hardware-based non-sorting median calculation method on a set of integer numbers. The method divides the binary representation of each integer element in the set into bit slices in order to find the element located in the middle position. The method exhibits a linear complexity order and our analysis shows that the best performance in execution time is obtained when slices of 4-bit in size are used for 8-bit and 16-bit integers, in mostly any data set size. Results suggest that software implementation of bit slice method for median calculation outperforms sorting-based methods with increasing improvement for larger data set size. For data set sizes of N > 5, our simulations show an improvement of at least 40%.
Resumo:
This paper describes a fast integer sorting algorithm, herein referred as Bit-index sort, which is a non-comparison sorting algorithm for partial per-mutations, with linear complexity order in execution time. Bit-index sort uses a bit-array to classify input sequences of distinct integers, and exploits built-in bit functions in C compilers supported by machine hardware to retrieve the ordered output sequence. Results show that Bit-index sort outperforms in execution time to quicksort and counting sort algorithms. A parallel approach for Bit-index sort using two simultaneous threads is included, which obtains speedups up to 1.6.
Resumo:
In this paper we propose a novel method for shape analysis called HTS (Hough Transform Statistics), which uses statistics from Hough Transform space in order to characterize the shape of objects in digital images. Experimental results showed that the HTS descriptor is robust and presents better accuracy than some traditional shape description methods. Furthermore, HTS algorithm has linear complexity, which is an important requirement for content based image retrieval from large databases. © 2013 IEEE.
Resumo:
With the widespread proliferation of computers, many human activities entail the use of automatic image analysis. The basic features used for image analysis include color, texture, and shape. In this paper, we propose a new shape description method, called Hough Transform Statistics (HTS), which uses statistics from the Hough space to characterize the shape of objects or regions in digital images. A modified version of this method, called Hough Transform Statistics neighborhood (HTSn), is also presented. Experiments carried out on three popular public image databases showed that the HTS and HTSn descriptors are robust, since they presented precision-recall results much better than several other well-known shape description methods. When compared to Beam Angle Statistics (BAS) method, a shape description method that inspired their development, both the HTS and the HTSn methods presented inferior results regarding the precision-recall criterion, but superior results in the processing time and multiscale separability criteria. The linear complexity of the HTS and the HTSn algorithms, in contrast to BAS, make them more appropriate for shape analysis in high-resolution image retrieval tasks when very large databases are used, which are very common nowadays. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
INTRODUCTION: The accurate evaluation of error of measurement (EM) is extremely important as in growth studies as in clinical research, since there are usually quantitatively small changes. In any study it is important to evaluate the EM to validate the results and, consequently, the conclusions. Because of its extreme simplicity, the Dahlberg formula is largely used worldwide, mainly in cephalometric studies. OBJECTIVES: (I) To elucidate the formula proposed by Dahlberg in 1940, evaluating it by comparison with linear regression analysis; (II) To propose a simple methodology to analyze the results, which provides statistical elements to assist researchers in obtaining a consistent evaluation of the EM. METHODS: We applied linear regression analysis, hypothesis tests on its parameters and a formula involving the standard deviation of error of measurement and the measured values. RESULTS AND CONCLUSION: we introduced an error coefficient, which is a proportion related to the scale of observed values. This provides new parameters to facilitate the evaluation of the impact of random errors in the research final results.