998 resultados para ionic resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary films generated on a series of inorganic compounds, typical of native films on metal and ceramic surfaces, when exposed to various ionic liquids (ILs) based on the trihexyl(tetradecyl)phosphonium cation have been characterized using multinuclear solid-state NMR. The NMR results indicate that SiO2 and Mg(OH)2 interact strongly with the anion and cation of each IL through a mechanism of adsorption of the anion and subsequent close proximity of the cation in a surface double layer (as observed through 1H−29Si cross polarization experiments). In contrast, Al2O3, MgO, ZnO, and ZrO2 appear less active, strongly suggesting the necessity of hydroxylated surface groups in order to enhance the generation of these interfacial films. Using solid-state NMR to characterize such interfaces not only has the potential to elucidate mechanisms of wear resistance and corrosion protection via ILs, but is also likely to allow their rapid screening for such durability applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N− indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports a preliminary exploration of the potential of the ionic liquid trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (P6,6,6,14M3PPh) for use as a conversion coating agent for corrosion protection of magnesium alloy AZ31. Results obtained for the as received IL did not indicate any measureable improvement in protection. However, when the IL was allowed to reach equilibrium/saturation with moisture from the atmosphere, treatment with this ‘wet’ solution resulted in a substantial improvement in corrosion resistance. Preliminary electrochemical, optical, and spectroscopic characterization of the film will be presented along with a possible mechanism for film formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition 4 wt % Zn, 1.7 wt % RE (Ce), 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P6,6,6,14][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of −200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical approach to the formation of a protective surface film on Mg alloys immersed in the ionic liquid (IL), trihexyl(tetradecyl)phosphonium–bis 2,4,4-trimethylpentylphosphinate, was investigated in this work. Initially, cyclic voltammetry was used with the Mg alloy being cycled from OCP to more anodic potentials. EIS data indicate that, under these circumstances, an optimum level of protection was achieved at intermediate potentials (e.g., 0 or 0.25 V versus Ag/AgCl). In the second part of this paper, a small constant bias was applied to the Mg alloy immersed in the IL for extended periods using a novel cell design. This electrochemical cell allowed us to monitor in situ surface film formation on the metal surface as well as the subsequent corrosion behaviour of the metal in a corrosive medium. This apparatus was used to investigate the evolution of the surface film on an AZ31 magnesium alloy under a potential bias (between ±100 mV versus open circuit) applied for over 24 h, and the film evolution was monitored using electrochemical impedance spectroscopy (EIS). A film resistance was determined from the EIS data and it was shown that this increased substantially during the first few hours (independent of the bias potential used) with a subsequent decrease upon longer exposure of the surface to the IL. Preliminary characterization of the film formed on the Mg alloy surface using ToF-SIMS indicates that a multilayer surface exists with a phosphorous rich outer layer and a native oxide/hydroxide film underlying this. The corrosion performance of a treated AZ31 specimen when exposed to 0.1 M NaCl aqueous solution showed considerable improvement, consistent with electrochemical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the corrosion of Mg alloy AZ31 in simulated body fluid (SBF) using static immersion tests and electrochemical impedance spectroscopy. A preliminary study on the effect of flowing SBF on the corrosion behaviour of AZ31 has also been carried out. Low toxicity ionic liquids (ILs) trimethyl(butyl)phosphonium diphenyl phosphate P1444DPP and trihexyl(tetradecyl)-phosphonium bis-2,4,4trimethylpentyl-phosphinate [P66614][ i(C8) 2PO2] have been used to provide corrosion protection for AZ31 in SBF. Time dependent immersion tests indicate that under static conditions, AZ31 suffers severe localised corrosion in SBF, with pits developing predominantly beside the Al-Mn intermetallic phase in the α matrix. At longer immersion times, the corrosion product eventually precipitates and covers the entire specimen surface. When exposed to SBF under flowing conditions with a shear stress of 0·88 Pa, more uniform corrosion was observed. The optical profilometry results and electrochemical impedance spectroscopy analysis suggest that both P
1444DPP and [P66614][i(C8)2PO2] pretreatments can increase the corrosion resistance of AZ31 in SBF, in particular by decreasing the number of deeper pits found on the alloy surface. Cytotoxic test shows that the presence of the ILs P
1444DPP and [P66614][i(C8)2PO2] in cell culture media slightly inhibits the growth of human coronary artery endothelial cells in comparison with the good cell viability around the treated specimen. A pretreatment with IL is used in order to improve the corrosion resistance of this alloy in SBF. © 2012 Institute of Materials, Minerals and Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AA5083 aluminium alloy has been shown to be partially passivated by a 2-step anodic pre-treatment in Trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P6,6,6,14][NTf2]) ionic liquid. Surface characterisation revealed that an electrochemical etching process had occurred, comparable to acid etching of aluminium. Scanning electron microscopy/energy dispersive x-ray spectroscopy results have established that magnesium dealloyed from the Mg2Si intermetallic particles and metal fluorides were deposited onto the remaining Mg2Si sites, which subsequently led to decreased anodic corrosion kinetics (to one third of the control) as well as an increase in the corrosion and pitting potentials. This unique electrochemical etching process offers a simple and quick method to improve the corrosion resistance of an aluminium alloy as it leads to a more uniform surface, in terms of defect size and distribution, compared to conventional acid etching. This process has the potential to be used as a pre-treatment to inhibit corrosion of AA5083 alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the use of magnesium alloys as metallic implant materials for biodegradable coronary artery stents has been steadily growing in interest. However, AZ31 magnesium alloys present poor corrosion resistance in the body environment. This work reports on the use of a treatment with low-toxicity IL Trimethyl (butyl) phosphonium diphenyl phosphate P1444DPP, which provides corrosion protection for magnesium alloy AZ31 in simulated body fluid (SBF). Before IL treatment, surface was cleaned by HNO3 and H3PO4 acid pickling solution. The effect of ionic liquid treatment on the corrosion performance of magnesium alloys AZ31in simulated body fluid has been investigated by electrochemical tests and the observation of surface morphology. The results show that this IL treatment succeeded in increasing the corrosion resistance of AZ31 when exposed to SBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloy ZE41 (Mg-Zn-RE-Zr), which is used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This work investigates the mechanism of corrosion, and the interaction between the grain boundary intermetallic phases, the zirconium (Zr)-rich regions within the grains and the bulk Mg rich matrix in both the as-cast and heat-treated conditions. The results of optical and scanning electron microscopy (SEM) show the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment. The Zr-rich regions play a distinct role in the early stages of corrosion with this alloy. The second part of this work investigates the interaction of two different ionic liquids (ILs) with the surface of the ZE41 alloy. ILs based on trihexyltetradecylphosphonium (P 6,6,6,14) coupled with either diphenylphosphate (DPP) or bis(trifluoromethanesulfonyl) amide (Tf 2N) have been shown to react with Mg alloy surfaces, leading to the formation of a surface film that can improve the corrosion resistance of the alloy. The interaction of the ILs with the ZE41 surface has been investigated by optical microscopy and SEM. Surface characterization has been performed using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The surface characterization and microscopy revealed the preferential interaction with the grain boundaries and grain boundary phases. Thus the morphology and microstructure of the Mg surface seems critical in determining the nature of the interaction with the IL. The corrosion protection of the IL films formed on the ZE41 surface was investigated by SEM and potentiodynamic polarisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A membrane reactor allows for simultaneous separation and reaction, and thus, can play a good role to produce value-added chemicals. In this work, we demonstrated such a membrane reactor based on fluorite oxide samarium-doped ceria (SDC) using an external short-circuit concept for oxygen permeation. The fluorite phase was employed to impart its high structural stability, while its limited electronic conductivity was overcome by the application of an external short circuit to function the SDC membrane for oxygen transport. On one side of the membrane, i.e., feed side, carbon dioxide decomposition into carbon monoxide and oxygen was carried out with the aid of a Pt or Ag catalyst. The resultant oxygen was concurrently depleted on the membrane surface and transported to the other side of the membrane, favorably shifting this equilibrium-limited reaction to the product side. The transported oxygen on the permeate side with the aid of a GdNi/Al2O3 catalyst was then consumed by the reaction with methane to form syngas, i.e., carbon monoxide and hydrogen. As such, the required driving force for gas transport through the membrane can be sustained by coupling two different reactions in one membrane reactor, whose stability to withstand these different gases at high temperatures is attained in this paper. We also examined the effect of the membrane thickness, oxygen ionic transport rate, and CO2 and CH4 flow rates to the membrane reactor performance. More importantly, here, we proved the feasibility of a highly stable membrane reactor based on an external short circuit as evidenced by achieving the constant performance in CO selectivity, CH4 conversion, CO2 conversion, and O2 flux during 100 h of operation and unaltered membrane structure after this operation together with the coking resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study introduces the water-soluble complexes containing hydrophobically associating copolymer and a series of surface activity imidazolium-based ionic liquids (CnmimBr, n=6, 8, 10, 12, 14 and 16). The polymer, denoted as PAAD, was prepared with acrylamide (AM), acrylic acid (AA) and N,N-diallyl-2-dodecylbenzenesulfonamide (DBDAP). And the hydrophobic associative behavior of PAAD was studied by a combination of the pyrene fluorescence probe and viscosimetry. Incorporation of CnmimBr (n=10, 12, 14 and 16) in PAAD leaded to the white thick gel, while the pellucid solutions were obtained in complexes of PAAD and CnmimBr (n=6 and 8); addition of C6mimBr around critical micelle concentration resulted in a large decrease in viscosity of solution. Therefore, we particularly investigated the performance of PAAD/C8mimBr complex. The interfacial tension of PAAD/C8mimBr complex solution and crude oil under different conditions was examined. Moreover, PAAD/C8mimBr complex exhibited superior temperature resistance and shear reversible performance for enhancing oil recovery (EOR) by rheological test. The promising EOR of 21.65% can be obtained by PAAD/C8mimBr complex showing high potential to utilize this kind of new complex in EOR processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst ionic liquids (IL) have been shown to inhibit corrosion on some reactive metals and alloys by forming a surface film, e.g. Li and Mg, understanding of the interaction between ionic liquids and aluminium is lacking. This research study investigated the viability of film formation on AA5083 Aluminium Alloy by electrochemical treatments in the trihexyl(tetradecyl)phosphonium diphenylphosphate ([P6,6,6,14][dpp]) IL. Two-step anodic treatments were performed on AA5083 in the IL, followed by a comparison of the corrosion behaviour of the IL-treated samples with that of a control. It has been revealed that the two-step IL-treatment led to reduced current densities on AA5083 under cyclic voltammetry scan in the IL before and after the IL-treatment. Lower corrosion rates have been shown on all samples treated in IL at room temperature. Surface characterisation showed a non-uniform porous film on the 50°C IL-treated sample with a film thickness ranging between 37nm and 155nm. The IL-film enhanced the corrosion resistance of AA5083 by protecting the Al-matrix and Fe-rich intermetallic particles (IMPs). Although findings of this study suggest similar IL-film formation as that on Li and Mg, more research needs to be conducted to optimise the electrochemical treatment conditions and ultimately to develop a robust IL-film formation procedure for corrosion protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambient temperature sodium batteries hold the promise of a new generation of high energy density, low-cost energy storage technologies. Particularly challenging in sodium electrochemistry is achieving high stability at high charge/discharge rates. We report here mixtures of inorganic/organic cation fluorosulfonamide (FSI) ionic liquids that exhibit unexpectedly high Na+ transference numbers due to a structural diffusion mechanism not previously observed in this type of electrolyte. The electrolyte can therefore support high current density cycling of sodium. We investigate the effect of NaFSI salt concentration in methylpropylpyrrolidinium (C3mpyr) FSI ionic liquid (IL) on the reversible plating and dissolution of sodium metal, both on a copper electrode and in a symmetric Na/Na metal cell. NaFSI is highly soluble in the IL allowing the preparation of mixtures that contain very high Na contents, greater than 3.2 mol/kg (50 mol %) at room temperature. Despite the fact that overall ion diffusivity decreases substantially with increasing alkali salt concentration, we have found that these high Na+ content electrolytes can support higher current densities (1 mA/cm2) and greater stability upon continued cycling. EIS measurements indicate that the interfacial impedance is decreased in the high concentration systems, which provides for a particularly low-resistance solid-electrolyte interphase (SEI), resulting in faster charge transfer at the interface. Na+ transference numbers determined by the Bruce-Vincent method increased substantially with increasing NaFSI content, approaching >0.3 at the saturation concentration limit which may explain the improved performance. NMR spectroscopy, PFG diffusion measurements, and molecular dynamics simulations reveal a changeover to a facile structural diffusion mechanism for sodium ion transport at high concentrations in these electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microparticles with high protein content can be used as diets to mimic the proximate composition of Artemia nauplii. After production, the particles were characterized with respect to their proximate composition, mean size, morphology, and rehydration behavior after drying. The protein content, lipid content and the particle moisture were similar to Artemia nauplii, with mean values of 50, 23, and 85%, respectively. Additionally, the particles were used in a pacu (Piaractus mesopotamicus) larval growth experiment. Also, the probiotic Lactobacillus acidophilus was added to one of the diets, and the effects of the diets were evaluated on larvae growth and stress resistance. Larvae fed the experimental diets had lower growth than larvae fed with Artemia nauplii or a commercial diet. All of the evaluated diets, including the experimental ones, showed high ingestion rates (>90%). In the stress test by air exposure, larvae fed with the microparticle without probiotic exhibited a significantly higher mortality than those fed the commercial diet or those fed with Artemia nauplii. The low growth rates may have been due to a potential nutritional inadequacy with respect to the low mineral/vitamin content of the experimental diets. (C) 2014 Elsevier Ltd. All rights reserved.