959 resultados para infrared parametric laser
Resumo:
The second-harmonic generation (SHG) from Si1-xGex alloy films has been investigated by near-infrared femtosecond laser. Recognized by s-out polarized SHG intensity versus rotational angle of sample, the crystal symmetry of the fully strained Si0.83Ge0.17 alloy is found changed from the O-h to the C-2 point group due to the inhomogeneity of the strain. Calibrated by double crystal X-ray diffraction, the strain-induced chi((2)) is estimated at 5.7 x 10(-7) esu. According to the analysis on p-in/s-out SHG, the strain-relaxed Si0.10Ge0.90 alloy film is confirmed to be not fully relaxed, and the remaining strain is quantitatively determined to be around 0.1%.
Resumo:
When aqueous suspensions of gold nanorods are irradiated with a pulsing laser (808 nm), pressure waves appear even at low frequencies (pulse repetition rate of 25 kHz). We found that the pressure wave amplitude depends on the dynamics of the phenomenon. For fixed concentration and average laser current intensity, the amplitude of the pressure waves shows a trend of increasing with the pulse slope and the pulse maximum amplitude.We postulate that the detected ultrasonic pressure waves are a sort of shock waves that would be generated at the beginning of each pulse, because the pressure wave amplitude would be the result of the positive interference of all the individual shock waves.
Resumo:
Direct, point-by-point inscription of fibre Bragg gratings by an infrared femtosecond laser has been reported recently. Response of these gratings to annealing at temperatures in the range 500 to 1050°C is studied for the first time. Gratings inscribed by infrared femtosecond lasers were thermally stable at temperatures up to 900°C, representing a significant improvement in comparison with the 'common', UV-inscribed, gratings. Annealing at temperatures up to 700°C increased grating reflectivity. © IEE 2005.
Resumo:
In this work, a point by point method for the inscription of fibre Bragg gratings using a tightly focused infrared femtosecond laser is implemented for the first time. Fibre Bragg gratings are wavelength-selective, retro-reflectors which have become a key component in optical communications as well as offering great potential as a sensing tool. Standard methods of fabrication are based on UV inscription in fibre with a photosensitive core. Despite the high quality of the gratings, a number of disadvantages are associated with UV inscription, in particular, the requirements of a photosensitive fibre, the low thermal stability and the need to remove the protective coating prior to inscription. By combining the great flexibility offered by the point by point method with the advantages inherent to inscription by an infrared femtosecond laser, the previous disadvantages are overcome. The method here introduced, allows a fast inscription process at a rate of ~1mm/s, gratings of lengths between 1cm and 2cm exhibiting reflections in excess of 99%. Physical dimensions of these gratings differ significantly from those inscribed by other methods, in this case the grating is confined to a fraction of the cross section of the core, leading to strong and controllable birefringence and polarisation dependent loss. Finally, an investigation of the potential for their exploitation towards novel applications is carried out, devices such as directional bend sensors inscribed in single-mode fibre, superimposed but non-overlapping gratings, and single-mode, single-polarisation fibre lasers, were designed, fabricated and characterised based on point by point femtosecond inscription.
Resumo:
Structural modification m gratings inscribed point-by-point by a femtosecond laser is investigated using quantitative phase microscopy. The gratings present a central region with a depressed refractive index surrounded by an outer corona with increased index. © 2006 Optical Society of America.
Resumo:
A novel, direction-sensitive bending sensor based on an asymmetric fiber Bragg grating (FBG) inscribed by an infrared femtosecond laser was demonstrated. The technique is based on tight transverse confinement of the femto-inscribed structures and can be directly applied in conventional, untreated singlemode fibers. The FBG structure was inscribed by an amplified, titanium sapphire laser system. The grating cross-section was elongated along the direction of the laser beam with the transverse dimensions of approximately 1 by 2 μm. It was suggested that the sensitivity of the device can be improved by inscribing smaller spatial features and by implementing more complex grating designs aimed at maximizing the effect of strain.
Resumo:
A direction-sensitive bend sensor in standard single-mode fiber is demonstrated for the first time based on an axially-offset fiber Bragg grating, directly written by an infrared femtosecond laser.
Resumo:
We report on a study of the CH3OD molecule in a search for new far-infrared (FIR) laser lines. For optical pumping of large offset vibrational absorption transitions, a continuous-wave waveguide CO2 laser with 300 MHz tunability around each line was used for the first time. As a consequence, 17. new far-infrared laser emissions were observed. For these lines, we also present data on wavelength, intensity, offset, relative polarization, and optimum operation pressure.
Resumo:
We present the results of a study on vinyl bromide for the search for new far infrared (FIR) laser lines. As the pump source, we use a CW waveguide CO2 laser with a tunability of 290 MHz around each line in order to pump large offset vibrational transitions. As a consequence, we obtained 28 new FIR laser emissions; 24 of them have wavelengths greater than 500 mum and are, therefore, suitable to be used in high-field EPR spectroscopy, For each of the new lines, we give the wavelength, the offset of the pumping transition with respect to the center Frequency of the CO2 emission, the polarization relative to that of the pumping laser line, the operating pressure, and the relative intensity. We also present a catalog including data of all of the FIR laser lines observed from this molecule up to now.
Resumo:
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD, (CH3OH)-C-13, (CD3OH)-C-13, (CD3OD)-C-13, (CH3OH)-O-18, CH2DOH, CHD2OH and CH2DOD.
Resumo:
Background: Low intensity laser therapy has been recommended to support the cutaneous repair; however, so far studies do not have evaluated the tissue response following a single laser treatment. This study investigated the effect of a single laser irradiation on the healing of full-thickness skin lesions in rats.Methods: Forty-eight male rats were randomly divided into three groups. One surgical lesion was created on the back of rats using a punch of 8 mm in diameter. One group was not submitted to any treatment after surgery and it was used as control. Two energy doses from an 830-nm near-infrared diode laser were used immediately post-wounding: 1.3 J cm(-2) and 3 J cm(-2). The laser intensity 53 mW cm(-2) was kept for both groups. Biometrical and histological analyses were accomplished at days 3, 7 and 14 post-wounding.Results: Irradiated lesions presented a more advanced healing process than control group. The dose of 1.3 J cm(-2) leaded to better results. Lesions of the group irradiated with 1.3 J cm(-2) presented faster lesion contraction showing quicker re-epithelization and reformed connective tissue with more organized collagen fibers.Conclusions: Low-intensity laser therapy may accelerate cutaneous wound healing in a rat model even if a single laser treatment is performed. This finding might broaden current treatment regimens. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the high-resolution Fourier transform spectrum of the C-O stretching fundamental band of CD3OH in order to assign far-infrared (FIR) laser transitions. The absorption spectrum was analyzed by means of the ''Ritz'' program, which calculates the energy level values directly from the Rydberg-Ritz combination principle. We have also used the ''LaseRitz'' program to facilitate the assignment of the FIR laser lines. As a consequence we could determine 12 new assignments, confirming 4 previously proposed ones and predicting new FIR laser emissions. (C) 1997 Academic Press.
Resumo:
We report the frequency measurements of 18 optically pumped far-infrared (FIR) laser lines generated from CD3OH and (CH3OH)-C-13. We use the heterodyne technique of mixing FIR laser radiations and microwave radiation on a metal-insulator-metal point-contact tunnel diode to determine the FIR laser frequencies. Two FIR laser systems, consisting of CO2 waveguide pump lasers and Fabry-Perot FIR laser cavities, were used as optical sources. (C) 1997 Optical Society of America.
Resumo:
This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250 kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragg-like grating is formed by moving the sample at a speed of 10 mu m/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.