984 resultados para information noncooperative game
Resumo:
Serious games are starting to attain a higher role as tools for learning in various contexts, but in particular in areas such as education and training. Due to its characteristics, such as rules, behavior simulation and feedback to the player's actions, serious games provide a favorable learning environment where errors can occur without real life penalty and students get instant feedback from challenges. These challenges are in accordance with the intended objectives and will self-adapt and repeat according to the student’s difficulty level. Through motivating and engaging environments, which serve as base for problem solving and simulation of different situations and contexts, serious games have a great potential to aid players developing professional skills. But, how do we certify the acquired knowledge and skills? With this work we intend to propose a methodology to establish a relationship between the game mechanics of serious games and an array of competences for certification, evaluating the applicability of various aspects in the design and development of games such as the user interfaces and the gameplay, obtaining learning outcomes within the game itself. Through the definition of game mechanics combined with the necessary pedagogical elements, the game will ensure the certification. This paper will present a matrix of generic skills, based on the European Framework of Qualifications, and the definition of the game mechanics necessary for certification on tour guide training context. The certification matrix has as reference axes: skills, knowledge and competencies, which describe what the students should learn, understand and be able to do after they complete the learning process. The guides-interpreters welcome and accompany tourists on trips and visits to places of tourist interest and cultural heritage such as museums, palaces and national monuments, where they provide various information. Tour guide certification requirements include skills and specific knowledge about foreign languages and in the areas of History, Ethnology, Politics, Religion, Geography and Art of the territory where it is inserted. These skills are communication, interpersonal relationships, motivation, organization and management. This certification process aims to validate the skills to plan and conduct guided tours on the territory, demonstrate knowledge appropriate to the context and finally match a good group leader. After defining which competences are to be certified, the next step is to delineate the expected learning outcomes, as well as identify the game mechanics associated with it. The game mechanics, as methods invoked by agents for interaction with the game world, in combination with game elements/objects allows multiple paths through which to explore the game environment and its educational process. Mechanics as achievements, appointments, progression, reward schedules or status, describe how game can be designed to affect players in unprecedented ways. In order for the game to be able to certify tour guides, the design of the training game will incorporate a set of theoretical and practical tasks to acquire skills and knowledge of various transversal themes. For this end, patterns of skills and abilities in acquiring different knowledge will be identified.
Resumo:
We consider a Bertrand duopoly model with unknown costs. The firms' aim is to choose the price of its product according to the well-known concept of Bayesian Nash equilibrium. The chooses are made simultaneously by both firms. In this paper, we suppose that each firm has two different technologies, and uses one of them according to a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We show that this game has exactly one Bayesian Nash equilibrium. We analyse the advantages, for firms and for consumers, of using the technology with highest production cost versus the one with cheapest production cost. We prove that the expected profit of each firm increases with the variance of its production costs. We also show that the expected price of each good increases with both expected production costs, being the effect of the expected production costs of the rival dominated by the effect of the own expected production costs.
Resumo:
We consider a price competition in a duopoly with substitutable goods, linear and symmetric demand. There is a firm (F 1) that chooses first the price p 1 of its good; the other firm (F 2) observes p 1 and then chooses the price p 2 of its good. The conclusions of this price-setting dynamical duopoly are substantially altered by the presence of either differentiated goods or asymmetric information about rival’s production costs. In this paper, we consider asymmetric information about rival’s production costs. We do ex-ante and ex-post analyses of firms’ profits and market prices. We compare the ex-ante firms’ expected profits with the ex-post firms’ profits.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Relatório de estágio de mestrado em Ensino de Informática
Resumo:
Abstract Despite the popularity of auction theoretical thinking, it appears that no one has presented an elementary equilibrium analysis of the first-price sealed-bid auction mechanism under complete information. This paper aims to remedy that omission. We show that the existence of pure strategy undominated Nash equilibria requires that the bidding space is not "too divisible" (that is, a continuum). In fact, when bids must form part of a finite grid there always exists a "high price equilibrium". However, there might also be "low price equilibria" and when the bidding space is very restrictive the revenue obtained in these "low price equilibria" might be very low. We discuss the properties of the equilibria and an application of auction theoretical thinking in which "low price equilibria" may be relevant. Keywords: First-price auctions, undominated Nash equilibria. JEL Classification Numbers: C72 (Noncooperative Games), D44 (Auctions).
Resumo:
In this paper, we consider an exchange economy µa la Shitovitz (1973), with atoms and an atomless set. We associate with it a strategic market game of the kind first proposed by Lloyd S. Shapley and known as the Shapley window model. We analyze the relationship between the set of the Cournot-Nash equilibrium allocations of the strategic market game and the Walras equilibrium allocations of the exchange economy with which it is associated. We show, with an example, that even when atoms are countably in¯nite, any Cournot-Nash equilibrium allocation of the game is not a Walras equilibrium of the underlying exchange economy. Accordingly, in the original spirit of Cournot (1838), we par- tially replicate the mixed exchange economy by increasing the number of atoms, without a®ecting the atomless part, and ensuring that the measure space of agents remains finite. We show that any sequence of Cournot-Nash equilibrium allocations of the strategic market games associated with the partially replicated exchange economies approximates a Walras equilibrium allocation of the original exchange economy.
Resumo:
There are two ways of creating incentives for interacting agents to behave in a desired way. One is by providing appropriate payoff incentives, which is the subject of mechanism design. The other is by choosing the information that agents observe, which we refer to as information design. We consider a model of symmetric information where a designer chooses and announces the information structure about a payoff relevant state. The interacting agents observe the signal realizations and take actions which affect the welfare of both the designer and the agents. We characterize the general finite approach to deriving the optimal information structure for the designer - the one that maximizes the designer's ex ante expected utility subject to agents playing a Bayes Nash equilibrium. We then apply the general approach to a symmetric two state, two agent, and two actions environment in a parameterized underlying game and fully characterize the optimal information structure: it is never strictly optimal for the designer to use conditionally independent private signals; the optimal information structure may be a public signal or may consist of correlated private signals. Finally, we examine how changes in the underlying game affect the designer's maximum payoff. This exercise provides a joint mechanism/information design perspective.
Resumo:
Game theory describes and analyzes strategic interaction. It is usually distinguished between static games, which are strategic situations in which the players choose only once as well as simultaneously, and dynamic games, which are strategic situations involving sequential choices. In addition, dynamic games can be further classified according to perfect and imperfect information. Indeed, a dynamic game is said to exhibit perfect information, whenever at any point of the game every player has full informational access to all choices that have been conducted so far. However, in the case of imperfect information some players are not fully informed about some choices. Game-theoretic analysis proceeds in two steps. Firstly, games are modelled by so-called form structures which extract and formalize the significant parts of the underlying strategic interaction. The basic and most commonly used models of games are the normal form, which rather sparsely describes a game merely in terms of the players' strategy sets and utilities, and the extensive form, which models a game in a more detailed way as a tree. In fact, it is standard to formalize static games with the normal form and dynamic games with the extensive form. Secondly, solution concepts are developed to solve models of games in the sense of identifying the choices that should be taken by rational players. Indeed, the ultimate objective of the classical approach to game theory, which is of normative character, is the development of a solution concept that is capable of identifying a unique choice for every player in an arbitrary game. However, given the large variety of games, it is not at all certain whether it is possible to device a solution concept with such universal capability. Alternatively, interactive epistemology provides an epistemic approach to game theory of descriptive character. This rather recent discipline analyzes the relation between knowledge, belief and choice of game-playing agents in an epistemic framework. The description of the players' choices in a given game relative to various epistemic assumptions constitutes the fundamental problem addressed by an epistemic approach to game theory. In a general sense, the objective of interactive epistemology consists in characterizing existing game-theoretic solution concepts in terms of epistemic assumptions as well as in proposing novel solution concepts by studying the game-theoretic implications of refined or new epistemic hypotheses. Intuitively, an epistemic model of a game can be interpreted as representing the reasoning of the players. Indeed, before making a decision in a game, the players reason about the game and their respective opponents, given their knowledge and beliefs. Precisely these epistemic mental states on which players base their decisions are explicitly expressible in an epistemic framework. In this PhD thesis, we consider an epistemic approach to game theory from a foundational point of view. In Chapter 1, basic game-theoretic notions as well as Aumann's epistemic framework for games are expounded and illustrated. Also, Aumann's sufficient conditions for backward induction are presented and his conceptual views discussed. In Chapter 2, Aumann's interactive epistemology is conceptually analyzed. In Chapter 3, which is based on joint work with Conrad Heilmann, a three-stage account for dynamic games is introduced and a type-based epistemic model is extended with a notion of agent connectedness. Then, sufficient conditions for backward induction are derived. In Chapter 4, which is based on joint work with Jérémie Cabessa, a topological approach to interactive epistemology is initiated. In particular, the epistemic-topological operator limit knowledge is defined and some implications for games considered. In Chapter 5, which is based on joint work with Jérémie Cabessa and Andrés Perea, Aumann's impossibility theorem on agreeing to disagree is revisited and weakened in the sense that possible contexts are provided in which agents can indeed agree to disagree.
Resumo:
We consider an oligopolistic market game, in which the players are competing firm in the same market of a homogeneous consumption good. The consumer side is represented by a fixed demand function. The firms decide how much to produce of a perishable consumption good, and they decide upon a number of information signals to be sent into the population in order to attract customers. Due to the minimal information provided, the players do not have a well--specified model of their environment. Our main objective is to characterize the adaptive behavior of the players in such a situation.
Resumo:
Two-stage game models of information acquisition in stochastic oligopoliesrequire the unrealistic assumption that firms observe the precision ofinformation chosen by their competitors before determining quantities. Thispaper analyzes secret information acquisition as a one-stage game. Relativeto the two-stage game firms are shown to acquire less information. Policyimplications based on the two-stage game yield, therefore, too high taxes ortoo low subsidies for research activities. For the case of heterogeneousduopoly it is shown that comparative statics results partly depend on theobservability assumption.
Resumo:
We introduce two ways of comparing information structures, say ${\cal I}$ and${\cal J}$. First we say that ${\cal I}$ is richer than ${\cal J}$ when forevery compact game $G$, all correlated equilibrium distributions of $G$ inducedby ${\cal J}$ are also induced by ${\cal I}$. Second, we say that ${\cal J}$is faithfully reproducable from ${\cal I}$ when all the players can computefrom their information in ${\cal I}$ ``new information'' that they could havereceived from ${\cal J}$. We prove that ${\cal I}$ is richer than ${\cal J}$if and only if ${\cal J}$ is faithfully reproducable from ${\cal I}$.
Resumo:
We formulate an evolutionary learning process in the spirit ofYoung (1993a) for games of incomplete information. The process involves trembles. For many games, if the amount of trembling is small, play will be in accordance with the games' (semi-strict) Bayesian equilibria most of the time. This supports the notion of Bayesian equilibrium. Further, often play will most of the time be in accordance with exactly one Bayesian equilibrium. This gives a selection among the Bayesian equilibria. For two specific games of economic interest wecharacterize this selection. The first is an extension to incomplete information of the prototype strategic conflict known as Chicken. The second is an incomplete information bilateral monopoly, which is also an extension to incompleteinformation of Nash's demand game, or a simple version ofthe so-called sealed bid double auction. For both gamesselection by evolutionary learning is in favor of Bayesianequilibria where some types of players fail to coordinate, such that the outcome is inefficient.
Resumo:
We perform an experiment on a pure coordination game with uncertaintyabout the payoffs. Our game is closely related to models that have beenused in many macroeconomic and financial applications to solve problemsof equilibrium indeterminacy. In our experiment each subject receives anoisy signal about the true payoffs. This game has a unique strategyprofile that survives the iterative deletion of strictly dominatedstrategies (thus a unique Nash equilibrium). The equilibrium outcomecoincides, on average, with the risk-dominant equilibrium outcome ofthe underlying coordination game. The behavior of the subjects convergesto the theoretical prediction after enough experience has been gained. The data (and the comments) suggest that subjects do not apply through"a priori" reasoning the iterated deletion of dominated strategies.Instead, they adapt to the responses of other players. Thus, the lengthof the learning phase clearly varies for the different signals. We alsotest behavior in a game without uncertainty as a benchmark case. The gamewith uncertainty is inspired by the "global" games of Carlsson and VanDamme (1993).
Resumo:
Previous works on asymmetric information in asset markets tendto focus on the potential gains in the asset market itself. We focus on the market for information and conduct an experimental study to explore, in a game of finite but uncertain duration, whether reputation can be an effective constraint on deliberate misinformation. At the beginning of each period, an uninformed potential asset buyer can purchase information, at a fixed price and from a fully-informed source, about the value of the asset in that period. The informational insiders cannot purchase the asset and are given short-term incentives to provide false information when the asset value is low. Our model predicts that, in accordance with the Folk Theorem, Pareto-superior outcomes featuring truthful revelation should be sustainable. However, this depends critically on beliefs about rationality and behavior. We find that, overall, sellers are truthful 89% of the time. More significantly, the observed frequency of truthfulness is 81% when the asset value is low. Our result is consistent with both mixed-strategy and trigger strategy interpretations and provides evidence that most subjects correctly anticipate rational behavior. We discuss applications to financial markets, media regulation, and the stability of cartels.