871 resultados para inbreeding avoidance
Resumo:
Dispersal is one of the most important, yet least understood phenomena of evolutionary ecology. Triggers and consequences of dispersal are difficult to study in natural populations since dispersers can typically only be identified a posteriori. Therefore, a lot of work on dispersal is either of a theoretical nature or based on anecdotal observation. This is especially true for cryptic species such as small mammals. We conducted an experiment on the common vole, Microtus arvalis, in semi-natural enclosures and investigated the spatial and genetic establishment success of residents and dispersers in their natal and new populations. Our study uses genetic data on the reproductive success of 1255 individuals to measure the fitness trajectories of the residents and dispersing individuals. In agreement with past studies, we found that dispersal was highly male-biased, and was most probably induced by the agonistic encounters with conspecifics, suggesting it could act as an inbreeding avoidance mechanism. There was low breeding success of dispersers into new populations. Although nearly 26% of identified dispersers reproduced in their natal populations, only seven percent reproduced in the new populations. Settlement appeared to be a pre-requisite for reproduction in both sexes, and animals that did not spatially settle into a new population dispersed again, usually on the same day of immigration. In the event that dispersers reproduced in the new population, they did so at relatively low population densities. We also found age-related differences between the sexes in breeding success, and male dispersers that subsequently established in the new population were young individuals that had not reproduced in their natal population, whereas successful females had already reproduced in their natal population. In conclusion, with our detailed field data on establishment and substantial parentage assignments to understand breeding success, we were able to gain an insight into the fitness of dispersers, and how the two sexes optimise their fitness. Taken together, our results help to further understand the relative advantages and costs of dispersal in the common vole.
Resumo:
Most plant species are hermaphrodites, with both male and female functions performed by the same individuals. However, separate sexes (dioecy) have evolved on numerous independent occasions, probably either in response to selection for inbreeding avoidance, or because it pays individuals to specialize in one gender or the other. Although the evolution of dioecy from hermaphroditism tends to be thought of as a one-way path, dioecy has broken down to yield hermaphroditic populations on several occasions. One such case is found in the mainly dioecious genus Mercurialis (Euphorbiaceae). In the species complex M. annua, diploids are dioecious, but polyploid populations are variously monoecious or androdioecious (where males co-exist with functional hermaphrodites). This species complex offers rich material for addressing questions concerning the evolution and ecology of combined versus separate sexes, the evolution of secondary sexual dimorphism, which likely contributes to the stability of dioecy in the genus, and the evolution and genetics of sex determination and sex chromosomes. The species also offers itself as a valuable teaching tool for addressing topics ranging from sex-ratio selection to inter-sexual competition.
Resumo:
Natural selection favours the genes which are able to introduce replicates of themselves in the next generation with higher certainty than do rival genes (Hamilton 1963). The fitness of an individual, it?s ability to produce future parents, depends on it?s own behaviour as well as on the behaviour of other individuals in the population. For instance, the intensity of competition an individual experience depends on the exploitation of resources by neighbours. The fitness is thus frequency dependent on what neighbours do. Behaviours can be classified according to the costs and benefits they have on the fitness of the behaver and it?s neighbours (Hamilton 1964, Hamilton 1975). According to this classification there exist four distinct social behaviours. (1) A gene confering the ability to use a new ressource is called selfish because it has a positive e_ect on the bearer of the gene but a negative e_ect on neighbours by the concomitant increase in competition. (2) An altruistic behaviour is defined as an action where an individual increases the fitness of a neighbour at the expense of it?s own. The e_ect is deleterious for the actor but positive for the receptor. (3) More surprinsingly, an individual might sacrifice a fraction of it?s ressources to harm another at no direct benefits. This spitefull behaviour incurs a cost for the actor but is also deleterious for the receptor. (4) Finally a cooperative behaviour breeds benefits for both actors and neighbours. In this thesis I will continue on the path traced by numerous evolutionnary biologist which attempt to fine tune our understanding of the evolution of social behaviours since Hamilton?s foundation (1963, 1964). A critical development over the last 40 years has been the realisation that competition between kin can partly or completely cancel out the role of relatedness as an agent favouring altruism (Wilson et al., 1992; Taylor, 1992a,b). Of importance is thus to determine the scale at which competition and altruism occur. One mechanism avoiding the complete dilution of relatedness by competition is the conditionnal expression of the social behaviors. Focus will be given in this thesis at the role played by di_erent recognition mechanism in paving the way to altruism (Komdeur and Hatchwell, 1999) when the population has a spatial structure. Further, the evolution of spite will also be considered in these settings. The thesis is fractionated into two parts. First, di_erent models promoting altruism cooperation and spite will be compared under the same theoretical umbrella. This is a rather informal and more personnal part of my thesis. It also serve as a justification and basis to "Altruism among kin and non-kin individuals" which is an article attempting to clas- sify the mechanisms leading to altruism and cooperation. Second, in the annexe, there are three research papers about kin selection, altruism and dispersal: "Is sociality driven by the costs of dispersal or the benefits of philopatry?: A role for kin-discrimination mechanism", "Altruism, dispersal and phenotype kin recognition" and "Inbreeding avoidance through kin recognition: choosy female boost male dispersal" this last paper incorporates kin recognition as an agent favoring sex-biased dispersal.
Resumo:
Abstract Many species of social insects have the ability to recognize their nestmates. In bees, sociality is maintained by bees that recognize which individuals should be helped and which should be hanned in order to maximize fitness (either inclusive or individual) (Hamilton 1964; Lin and Michener 1972). Since female bees generally lay eggs in a single nest, it is highly likely that bees found cohabitating in the same nest are siblings. According to the kin selection hypothesis, individuals should cooperate and avoid aggression with same sex nestmates (Hamilton 1964). However, in opposite sex pairs that are likely kin, aggression should increase among nestmates as an expression of inbreeding avoidance (Lihoreau et al. 2007). Female bees often guard nest entrances, recognizing and excluding foreign conspecific females that threaten to steal nest resources (Breed and Page 1991). Conversely, males that aggressively guard territories should avoid aggression towards other males that are likely kin (Shellman-Reeve and Gamboa 1984). In order to test whether Xy/ocopa virginica can distinguish nestmates from non-nestmates, circle tube testing arenas were used. Measures of aggression, cooperation and tolerance were evaluated to detennine the presence of nestmate recognition in this species. The results of this study indicate that male and female X virginica have the ability to distinguish nestmates from non-nestmates. Individuals in same sex pairs demonstrated increased pushing, biting, and C-posturing when faced with non-nestmates. Males in same sex pairs also attempted to pass (unsuccessfully) nOIl-nestmates more often than ncstmates, suggesting that this behaviour may be an cxpression of dominancc in males. Increased cooperation exemplified by successful passes was not observed among nestmates. However, incrcased tolerance in the [onn of head-to-head touching was observed for nestmates in female same sex and opposite sex pairs. These results supported the kin selection hypothesis. Moreover, increased tolerance among opposite sex non-nestmates suggested that X virginica do not demonstrate inbreeding avoidance among nestmates. 3 The second part of this study was conducted to establish the presence and extent of drifting, or travelling to different nests, in a Xylocopa virgillica population. Drifting in flying Hymenoptera is reported to be the result of navigation error and guard bees erroneously admitting novel individuals into the nest (Michener 1966). Since bees in this study were individually marked and captured at nest entrances, the locations where individuals were caught allowed me to determine where and how often bees travelled from nest to nest. Ifbees were captured near their home nests, changing nests may have been deliberate or explained by navigational error. However, ifbees were found in nests further away from their homes, this provides stronger evidence that flying towards a novel nest may have been deliberate. Female bees are often faithful to their own nests (Kasuya 1981) and no drifting was expected in female X virginica because they raise brood and contribute to nest maintenance activities. Contrary to females, males were not expected to remain faithful to a single nest. Results showed that many more females drifted than expected and that they were most often recaptured in a single nest, either their home nest or a novel nest. There were some females that were never caught in the same nest twice. In addition, females drifted to further nests when population density was low (in 2007), suggesting they seek out and claim nesting spaces when they are available. Males, as expected, showed the opposite pattern and most males drifted from nest to nest, never recaptured in the same location. This pattern indicates that males may be nesting wherever space is available, or nesting in benches nearest to their territories. This study reveals that both female and male X virginica are capable of nestmate recognition and use this ability in a dynamic environment, where nest membership is not as stable as once thought.
Resumo:
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.
Resumo:
Inbreeding depression is one of the main forces opposing the evolution of self-fertilization. Of central importance is the hypothesis that inbreeding depression and selfing coevolve antagonistically, generating either low selfing rate and high inbreeding depression or vice versa. However, there is limited evidence for this coevolution within species. We investigated this topic in the hermaphroditic snail Physa acuta. In this species, isolated individuals delay the onset of egg laying compared to individuals having access to mates. Longer delays (''waiting times'') indicate more intense selfing avoidance. We measured inbreeding depression and waiting time in a large quantitative-genetic experiment (281 outbred families derived from 26 natural populations). We observed large genetic variance for both traits and a strong positive genetic covariance between them, most of which resided within rather than among populations. It means that, within populations, individuals with higher mutation load avoided selfing more strongly on average. This genetic covariance may result from pleiotropy and/or linkage disequilibrium. Whatever its genetic architecture, the fact it emerges specifically when individuals are deprived of mates suggests it is not fortuitous and rather reflects the action of natural selection. We conclude that a diversity of mating strategies can arise within populations subjected to variation in inbreeding depression.
Resumo:
Inbreeding adversely affects life history traits as well as various other fitness-related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75<F<0.93) consistently showed reduced egg-to-adult viability (on average by 28%), the reduction in learning performance varied among assays (average=18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F=0.38) showed no detectable decline in learning performance, but still had reduced egg-to-adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts a trade-off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi-dominant) effects.
Resumo:
Inbreeding load affects not only the average fecundity of philopatric individuals but also its variance. From bet-hedging theory, this should add further dispersal pressures to those stemming from the mere avoidance of inbreeding. Pressures on both sexes are identical under monogamy or promiscuity. Under polygyny, by contrast, the variance in reproductive output decreases with dispersal rate in females but increases in males, which should induce a female-biased dispersal. To test this prediction, we performed individual-based simulations. From our results, a female-biased dispersal indeed emerges as both polygyny and inbreeding load increase. We conclude that sex-biased dispersal may be selected for as a bet-hedging strategy.
Resumo:
Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn
Resumo:
40
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
A new autosomal recessive genetic condition, the SPOAN syndrome (an acronym for spastic paraplegia, optic atrophy and neuropathy syndrome), was recently discovered in an isolated region of the State of Rio Grande do Norte in Northeast Brazil, in a population that was identified by the IBGE (Brazilian Institute of Geography and Statistics) as belonging to the Brazilian communities with the highest rates of "deficiencies" (Neri, 2003), a term used to describe diseases, malformations, and handicaps in general. This prompted us to conduct a study of consanguinity levels in five of its municipal districts by directly interviewing their inhabitants. Information on 7,639 couples (corresponding to about 40% of the whole population of the studied districts) was obtained. The research disclosed the existence of very high frequencies of consanguineous marriages, which varied from about 9% to 32%, suggesting the presence of a direct association between genetic diseases such as the SPOAN syndrome, genetic drift and inbreeding levels. This fact calls for the introduction of educational programs for the local populations, as well as for further studies aiming to identify and characterize other genetic conditions. Epidemiological strategies developed to collect inbreeding data, with the collaboration of health systems available in the region, might be very successful in the prospecting of genetic disorders.
Resumo:
The purpose of the current study was to understand how visual information about an ongoing change in obstacle size is used during obstacle avoidance for both lead and trail limbs. Participants were required to walk in a dark room and to step over an obstacle edged with a special tape visible in the dark. The obstacle's dimensions were manipulated one step before obstacle clearance by increasing or decreasing its size. Two increasing and two decreasing obstacle conditions were combined with seven control static conditions. Results showed that information about the obstacle's size was acquired and used to modulate trail limb trajectory, but had no effect on lead limb trajectory. The adaptive step was influenced by the time available to acquire and process visual information. In conclusion, visual information about obstacle size acquired during lead limb crossing was used in a feedforward manner to modulate trail limb trajectory.
Resumo:
Ficus arpazusa Casaretto is a fig tree native to the Atlantic Rain Forest sensu lato. High levels of genetic diversity and no inbreeding were observed in Ficus arpazusa. This genetic pattern is due to the action of its pollinator, Pegoscapus sp., which disperses pollen an estimated distance of 5.6 km, and of Ficus arpazusa`s mating system which, in the study area, is allogamous. This study highlights the importance of adding both ecological and genetic data into population studies, allowing a better understanding of evolutionary processes and in turn increasing the efficacy of forest management and revegetation projects, as well as species conservation.
5-HT1A receptors of the lateral septum regulate inhibitory avoidance but not escape behavior in rats
Resumo:
Serotonin in the lateral septum (LS) has been implicated in the modulation of defensive behaviors and in anxiety. However, it is currently unknown whether changes in 5-HT mechanisms in this brain area may selectively affect defensive responses associated with specific subtypes of anxiety disorders recognized in clinical settings. To address this question, we evaluated the effect of the intra-LS injection of the 5-HT1A/7 receptor agonist 8-CH-DPAT (0.6, 3.0, 15.0 nmol) in male Wistar rats exposed to the elevated T-maze animal model of anxiety. This test allows the measurement of two behavioral defensive responses in the same rat: inhibitory avoidance and escape behavior. In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. The effects of 8-OH-DPAT were compared to those caused by a standard anxiolytic compound, the benzodiazepine receptor agonist midazolam (MDZ, 20 nmol). We also investigated whether the intra-LS injection of the 5-HT1A receptor antagonist WAY-100635 (0.37 nmol) was able to block the effects of 8-OH-DPAT. All animals were also tested in an open field for locomotor activity assessments. Results showed that whereas intra-LS administration of MDZ decreased avoidance latencies, suggesting an anxiolytic action, 8-OH-DPAT caused the opposite effect. Neither drug affected the escape performance. Intra-LS administration of WAY-100635 blocked the anxiogenic effect caused by 8-OH-DPAT. No changes to locomotion were detected in the open field. The data suggests that LS 5-HT1A receptors are involved in the control of inhibitory avoidance behavior and that a failure in this regulatory mechanism may be of importance to the physiopathology of generalized anxiety disorder. (c) 2008 Elsevier Inc. All rights reserved.