1000 resultados para in vitro permeability
Resumo:
The aim of this work was to investigate alternative safe and effective permeation enhancers for buccal peptide delivery. Basic amino acids improved insulin solubility in water while 200 and 400 µg/mL lysine significantly increased insulin solubility in HBSS. Permeability data showed a significant improvement in insulin permeation especially for 10 µg/mL of lysine (p < 0.05) and 10 µg/mL histidine (p < 0.001), 100 µg/mL of glutamic acid (p < 0.05) and 200 µg/mL of glutamic acid and aspartic acid (p < 0.001) without affecting cell integrity; in contrast to sodium deoxycholate which enhanced insulin permeability but was toxic to the cells. It was hypothesized that both amino acids and insulin were ionised at buccal cavity pH and able to form stable ion pairs which penetrated the cells as one entity; while possibly triggering amino acid nutrient transporters on cell surfaces. Evidence of these transport mechanisms was seen with reduction of insulin transport at suboptimal temperatures as well as with basal-to-apical vectoral transport, and confocal imaging of transcellular insulin transport. These results obtained for insulin is the first indication of a possible amino acid mediated transport of insulin via formation of insulin-amino acid neutral complexes by the ion pairing mechanism.
Resumo:
To characterize liposomal-lidocaine formulations for topical use on oral mucosa and to compare their in vitro permeation and in vivo anesthetic efficacy with commercially available lidocaine formulations. Large unilamellar liposomes (400 nm) containing lidocaine were prepared using phosphatidylcholine, cholesterol, and α-tocoferol (4:3:0.07, w:w:w) and were characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and in vitro release. In vitro permeation across pig palatal mucosa and in vivo topical anesthetic efficacy on the palatal mucosa in healthy volunteers (double-blinded cross-over, placebo controlled study) were performed. The following formulations were tested: liposome-encapsulated 5% lidocaine (Liposome-Lido5); liposome-encapsulated 2.5% lidocaine (Liposome-Lido2.5); 5% lidocaine ointment (Xylocaina®), and eutectic mixture of lidocaine and prilocaine 2.5% (EMLA®). The Liposome-Lido5 and EMLA showed the best in vitro permeation parameters (flux and permeability coefficient) in comparison with Xylocaina and placebo groups, as well as the best in vivo topical anesthetic efficacy. We successfully developed and characterized a liposome encapsulated 5% lidocaine gel. It could be considered an option to other topical anesthetic agents for oral mucosa.
Resumo:
Rutin, one of the major flavonoids found in an assortment of plants, was reported to act as a sun protection factor booster with high anti-UVA defense, antioxidant, antiaging, and anticellulite, by improvement of the cutaneous microcirculation. This research work aimed at evaluating the rutin in vitro release from semisolid systems, in vertical diffusion cells, containing urea, isopropanol and propylene glycol, associated or not, according to the factorial design with two levels with center point. Urea (alone and in association with isopropanol and propylene glycol) and isopropanol (alone and in association with propylene glycol) influenced significant and negatively rutin liberation in diverse parameters: flux (g/cm2.h); apparent permeability coefficient (cm/h); rutin amount released (g/cm2); and liberation enhancement factor. In accordance with the results, the presence of propylene glycol 5.0% (wt/wt) presented statistically favorable to promote rutin release from this semisolid system with flux = 105.12 8.59 g/cm2.h; apparent permeability coefficient = 7.01 0.572 cm/h; rutin amount released = 648.80 53.01 g/cm2; and liberation enhancement factor = 1.21 0.07.
Resumo:
Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Purpose. To study epidermal and polyethylene membrane penetration and retention of the sunscreen benzophenone-3 (BP) from a range of single solvent vehicles and evaluate solvent effects on permeability parameters. Methods. The solubility of BP was measured in a number of solvents. Penetration of BP across human epidermis and high density polyethylene (HDPE) membranes was studied from 50% saturated solutions in each solvent. Results. Maximal BP fluxes from the solvents across the two membranes varied widely. Highest fluxes were observed from 90% ethanol (EtOH) for epidermis and from isopropyl myristate (IPM) and C12-15 benzoate alcohols (C12-15 BA) for HDPE membrane. Both the flux and estimated permeability coefficient and skin-vehicle partitioning of BP appeared to be related to the vehicle solubility parameter (delta(v)). The major effects of solvents on BP flux appear to be via changes in BP diffusivity through the membranes. Conclusions. Minimal penetration of sunscreens such as BP is best achieved by choosing vehicles with a delta(v) substantially different to the solubility parameter of the membrane.
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.
Resumo:
Purpose. The flux of a topically applied drug depends on the activity in the skin and the interaction between the vehicle and skin. Permeation of vehicle into the skin can alter the activity of drug and the properties of the skin barrier. The aim of this in vitro study was to separate and quantify these effects. Methods. The flux of four radiolabeled permeants (water, phenol, diflunisal, and diazepam) with log K-oct/water values from 1.4 to 4.3 was measured over 4 h through heat-separated human epidermis pretreated for 30 min with vehicles having Hildebrand solubility parameters from 7.9 to 23.4 (cal/cm(3))(1/2). Results. Enhancement was greatest after pretreatment with the more lipophilic vehicles. A synergistic enhancement was observed using binary mixtures. The flux of diazepam was not enhanced to the same extent as the other permeants, possibly because its partitioning into the epidermis is close to optimal (log K-oct 2.96). Conclusion. An analysis of the permeant remaining in the epidermis revealed that the enhancement can be the result of either increased partitioning of permeant into the epidermis or an increasing diffusivity of permeants through the epidermis.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
The effect of α-amylase degradation on the release of gentamicin from starch-conjugated chitosan microparticles was investigated up to 60 days. Scanning electron microscopic observations showed an increase in the porosity and surface roughness of the microparticles as well as reduced diameters. This was confirmed by 67% weight loss of the microparticles in the presence of α-amylase. Over time, a highly porous matrix was obtained leading to increased permeability and increased water uptake with possible diffusion of gentamicin. Indeed, a faster release of gentamicin was observed with α-amylase. Starch-conjugated chitosan particles are non-toxic and highly biocompatible for an osteoblast (SaOs-2) and fibroblast (L929) cell line as well as adipose-derived stem cells. When differently produced starch-conjugated chitosan particles were tested, their cytotoxic effect on SaOs-2 cells was found to be dependent on the crosslinking agent and on the amount of starch used.
Resumo:
PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.
Resumo:
Rotaviruses have been implicated as the major causal agents of acute diarrhoea in mammals and fowls. Experimental rotavirus infection have been associated to a series of sub-cellular pathologic alterations leading to cell lysis which may represent key functions in the pathogenesis of the diarrhoeic disease. The current work describes the cytopathic changes in cultured MA-104 cells infected by a simian (SA-11) and a porcine (1154) rotavirus strains. Trypan blue exclusion staining showed increased cell permeability after infection by both strains, as demonstrated by cell viability. This effect was confirmed by the leakage of infected cells evaluated by chromium release. Nuclear fragmentation was observed by acridine orange and Wright staining but specific DNA cleavage was not detected. Ultrastructural changes, such as chromatin condensation, cytoplasm vacuolisation, and loss of intercellular contact were shown in infected cells for both strains. In situ terminal deoxynucleotidyl transferase (Tunel) assay did not show positive result. In conclusion, we demonstrated that both strains of rotavirus induced necrosis as the major degenerative effect.
Resumo:
An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune ethiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applyed for dengue fever.
Resumo:
Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.
Resumo:
OBJECTIVES: In vitro mechanical injury of articular cartilage is useful to identify events associated with development of post-traumatic osteoarthritis (OA). To date, many in vitro injury models have used animal cartilage despite the greater clinical relevance of human cartilage. We aimed to characterize a new in vitro injury model using elderly human femoral head cartilage and compare its behavior to that of an existing model with adult bovine humeral head cartilage. DESIGN: Mechanical properties of human and bovine cartilage disks were characterized by elastic modulus and hydraulic permeability in radially confined axial compression, and by Young's modulus, Poisson's ratio, and direction-dependent radial strain in unconfined compression. Biochemical composition was assessed in terms of tissue water, solid, and glycosaminoglycan (GAG) contents. Responses to mechanical injury were assessed by observation of macroscopic superficial tissue cracks and histological measurements of cell viability following single injurious ramp loads at 7 or 70%/s strain rate to 3 or 14 MPa peak stress. RESULTS: Confined compression moduli and Young's moduli were greater in elderly human femoral cartilage vs adult bovine humeral cartilage whereas hydraulic permeability was less. Radial deformations of axially compressed explant disks were more anisotropic (direction-dependent) for the human cartilage. In both cartilage sources, tissue cracking and associated cell death during injurious loading was common for 14 MPa peak stress at both strain rates. CONCLUSION: Despite differences in mechanical properties, acute damage induced by injurious loading was similar in both elderly human femoral cartilage and adult bovine humeral cartilage, supporting the clinical relevance of animal-based cartilage injury models. However, inherent structural differences such as cell density may influence subsequent cell-mediated responses to injurious loading and affect the development of OA.
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.