999 resultados para hydrolysis methods
Resumo:
Objectives: This study evaluated the surface microhardness (SM) and roughness (SR) alterations of dental resins submitted to pH catalysed degradation regimens. Methods: Thirty discs of each TPH Spectrum (Dentsply), Z100 (3M-ESPE), or an unfilled experimental bis-GMA/TEGDMA resin were fabricated, totaling 90 specimens. Each specimen was polymerized for 40 s, finished, polished, and individually stored in deionized water at 37 degrees C for 7 days. Specimens were randomly assigned to the following pH solutions: 1.0, 6.9 or 13, and for SM or SR evaluations (n = 5). Baseline Knoop-hardness of each specimen was obtained by the arithmetic mean of five random micro-indentations. For SR, mean baseline values were obtained by five random surface tracings (R-a). Specimens were then soaked in one of the following storage media at 37 degrees C: (1) 0.1 M, pH 1.0 HCl, (2) 0.1 N, pH 13.0 NaOCl, and (3) deionized water (pH 6.9). Solutions were replaced daily. Repeated SM and SR measurements were performed at the 3-, 7- and 14-day storage time intervals. For each test and resin, data were analysed by two-way ANOVA followed by Tukey's test (alpha = 0.05). Results: There was significant decrease in SM and increase in SR values of composites after storage in alkaline medium. TPH and Z100 presented similar behaviour for SM and SR after immersion in the different media, whereas unfilled resin values showed no significant change. Conclusion: Hydrolytic degradation of resin composites seems to begin with the silanized inorganic particles and therefore depend on their composition. Significance: To accelerate composite hydrolysis and produce quick in vitro microstructural damage, alkaline medium appears to be more suitable than acidic medium. Contemporary resin composite properties seem to withstand neutral and acidic oral environments tolerably well. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The potential energy surface for the first step of the alkaline hydrolysis of methyl acetate was explored by a variety of methods. The conformational search routine within SPARTAN was used to determine the lowest energy am1 and pm3 structures for the anionic tetrahedral intermediate. Ab initio single point and geometry optimization calculations were performed to determine the lowest energy conformer, and the linear synchronous transition (lst) method was used to provide an initial structure for transition state optimization. Transition states were obtained at the am1, pm3, 3-21G, and 3-21 + G levels of theory. These transition states were compared with the anionic tetrahedral intermediates to examine the assumption that the intermediate is a good model for the transition state. In addition, the Cramer/Truhlar sm3 solvation model was used at the semiempirical level to compare gas phase and aqueous alkaline hydrolysis of methyl acetate.
Resumo:
A computationally efficient procedure for modeling the alkaline hydrolysis of esters is proposed based on calculations performed on methyl acetate and methyl benzoate systems. Extensive geometry and energy comparisons were performed on the simple ester methyl acetate. The effectiveness of performing high level single point ab initio energy calculations on the geometries obtained from semiempirical and ab initio methods was determined. The AM1 and PM3 semiempirical methods are evaluated for their ability to model the transition states and intermediates for ester hydrolysis. The Cramer/Truhlar SM3 solvation method was used to determine activation energies. The most computationally efficient way to model the transition states of large esters is to use the PM3 method. The PM3 transition structure can then be used as a template for the design of haptens capable of inducing catalytic antibodies.
Resumo:
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.
Resumo:
Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.
Resumo:
The aim of this clinical study was to determine the efficacy of Uncaria tomentosa (cat's claw) against denture stomatitis (DS). Fifty patients with DS were randomly assigned into 3 groups to receive 2% miconazole, placebo, or 2% U tomentosa gel. DS level was recorded immediately, after 1 week of treatment, and 1 week after treatment. The clinical effectiveness of each treatment was measured using Newton's criteria. Mycologic samples from palatal mucosa and prosthesis were obtained to determinate colony forming units per milliliter (CFU/mL) and fungal identification at each evaluation period. Candida species were identified with HiCrome Candida and API 20C AUX biochemical test. DS severity decreased in all groups (P < .05). A significant reduction in number of CFU/mL after 1 week (P < .05) was observed for all groups and remained after 14 days (P > .05). C albicans was the most prevalent microorganism before treatment, followed by C tropicalis, C glabrata, and C krusei, regardless of the group and time evaluated. U tomentosa gel had the same effect as 2% miconazole gel. U tomentosa gel is an effective topical adjuvant treatment for denture stomatitis.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
What is the contribution of the provision, at no cost for users, of long acting reversible contraceptive methods (LARC; copper intrauterine device [IUD], the levonorgestrel-releasing intrauterine system [LNG-IUS], contraceptive implants and depot-medroxyprogesterone [DMPA] injection) towards the disability-adjusted life years (DALY) averted through a Brazilian university-based clinic established over 30 years ago. Over the last 10 years of evaluation, provision of LARC methods and DMPA by the clinic are estimated to have contributed to DALY averted by between 37 and 60 maternal deaths, 315-424 child mortalities, 634-853 combined maternal morbidity and mortality and child mortality, and 1056-1412 unsafe abortions averted. LARC methods are associated with a high contraceptive effectiveness when compared with contraceptive methods which need frequent attention; perhaps because LARC methods are independent of individual or couple compliance. However, in general previous studies have evaluated contraceptive methods during clinical studies over a short period of time, or not more than 10 years. Furthermore, information regarding the estimation of the DALY averted is scarce. We reviewed 50 004 medical charts from women who consulted for the first time looking for a contraceptive method over the period from 2 January 1980 through 31 December 2012. Women who consulted at the Department of Obstetrics and Gynaecology, University of Campinas, Brazil were new users and users switching contraceptive, including the copper IUD (n = 13 826), the LNG-IUS (n = 1525), implants (n = 277) and DMPA (n = 9387). Estimation of the DALY averted included maternal morbidity and mortality, child mortality and unsafe abortions averted. We obtained 29 416 contraceptive segments of use including 25 009 contraceptive segments of use from 20 821 new users or switchers to any LARC method or DMPA with at least 1 year of follow-up. The mean (± SD) age of the women at first consultation ranged from 25.3 ± 5.7 (range 12-47) years in the 1980s, to 31.9 ± 7.4 (range 16-50) years in 2010-2011. The most common contraceptive chosen at the first consultation was copper IUD (48.3, 74.5 and 64.7% in the 1980s, 1990s and 2000s, respectively). For an evaluation over 20 years, the cumulative pregnancy rates (SEM) were 0.4 (0.2), 2.8 (2.1), 4.0 (0.4) and 1.3 (0.4) for the LNG-IUS, the implants, copper IUD and DMPA, respectively and cumulative continuation rates (SEM) were 15.1 (3.7), 3.9 (1.4), 14.1 (0.6) and 7.3 (1.7) for the LNG-IUS, implants, copper IUD and DMPA, respectively (P < 0.001). Over the last 10 years of evaluation, the estimation of the contribution of the clinic through the provision of LARC methods and DMPA to DALY averted was 37-60 maternal deaths; between 315 and 424 child mortalities; combined maternal morbidity and mortality and child mortality of between 634 and 853, and 1056-1412 unsafe abortions averted. The main limitations are the number of women who never returned to the clinic (overall 14% among the four methods under evaluation); consequently the pregnancy rate could be different. Other limitations include the analysis of two kinds of copper IUD and two kinds of contraceptive implants as the same IUD or implant, and the low number of users of implants. In addition, the DALY calculation relies on a number of estimates, which may vary in different parts of the world. LARC methods and DMPA are highly effective and women who were well-counselled used these methods for a long time. The benefit of averting maternal morbidity and mortality, child mortality, and unsafe abortions is an example to health policy makers to implement more family planning programmes and to offer contraceptive methods, mainly LARC and DMPA, at no cost or at affordable cost for the underprivileged population. This study received partial financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant # 2012/12810-4 and from the National Research Council (CNPq), grant #573747/2008-3. B.F.B., M.P.G., and V.M.C. were fellows from the scientific initiation programme from FAPESP. Since the year 2001, all the TCu380A IUD were donated by Injeflex, São Paulo, Brazil, and from the year 2006 all the LNG-IUS were donated by the International Contraceptive Access Foundation (ICA), Turku, Finland. Both donations are as unrestricted grants. The authors declare that there are no conflicts of interest associated with this study.
Resumo:
The microabrasion technique of enamel consists of selectively abrading the discolored areas or causing superficial structural changes in a selective way. In microabrasion technique, abrasive products associated with acids are used, and the evaluation of enamel roughness after this treatment, as well as surface polishing, is necessary. This in-vitro study evaluated the enamel roughness after microabrasion, followed by different polishing techniques. Roughness analyses were performed before microabrasion (L1), after microabrasion (L2), and after polishing (L3).Thus, 60 bovine incisive teeth divided into two groups were selected (n=30): G1- 37% phosphoric acid (37%) (Dentsply) and pumice; G2- hydrochloric acid (6.6%) associated with silicon carbide (Opalustre - Ultradent). Thereafter, the groups were divided into three sub-groups (n=10), according to the system of polishing: A - Fine and superfine granulation aluminum oxide discs (SofLex 3M); B - Diamond Paste (FGM) associated with felt discs (FGM); C - Silicone tips (Enhance - Dentsply). A PROC MIXED procedure was applied after data exploratory analysis, as well as the Tukey-Kramer test (5%). No statistical differences were found between G1 and G2 groups. L2 differed statistically from L1 and showed superior amounts of roughness. Differences in the amounts of post-polishing roughness for specific groups (1A, 2B, and 1C) arose, which demonstrated less roughness in L3 and differed statistically from L2 in the polishing system. All products increased enamel roughness, and the effectiveness of the polishing systems was dependent upon the abrasive used.
Resumo:
Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.
Resumo:
New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, 1H-NMR and 15N-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+)-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr) reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan.
Resumo:
Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.
Resumo:
The aim of the present study was to compare four methods of fixation in mandibular body fractures. Mechanical and photoelastic tests were performed using polyurethane and photoelastic resin mandibles, respectively. The study groups contained the following: (I), two miniplates of 2.0 mm; (II) one 2.0 mm plate and an Erich arch bar; (III) one 2.4 mm plate and an Erich arch bar, and (IV) one 2.0 mm plate and one 2.4 mm plate. The differences between the mean values were analyzed using Tukey's test, the Mann-Whitney test and the Bonferroni correction. Group II recorded the lowest resistance, followed by groups I, IV and III. The photoelastic test confirmed the increase of tension in group II. The 2.4 mm system board in linear mandibular body fractures provided more resistance and the use of only one 2.0 mm plate in the central area of the mandible created higher tension.