987 resultados para homogeneous phantom
Resumo:
The adsorption kinetics of phosphate onto Nb(2)O(5)center dot nH(2)O was investigated at initial phosphate concentrations 10 and 50 mg L(-1). The kinetic process was described by a pseudo second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both Delta H and Delta S suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The effective desorption could be achieved using water at pH 12. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study presents the results of a mature landfill leachate treated by a homogeneous catalytic ozonation process with ions Fe(2+) and Fe(3+) at acidic pH. Quality assessments were performed using Taguchi`s method (L(8) design). Strong synergism was observed statistically between molecular ozone and ferric ions, pointing to their catalytic effect on (center dot)OH generation. The achievement of better organic matter depollution rates requires an ozone flow of 5 L h(-1) (590 mg h(-1) O(3)) and a ferric ion concentration of 5 mg L(-1).
Resumo:
Perceived depth was measured for three-types of stereograms with the colour/texture of half-occluded (monocular) regions either similar to or dissimilar to that of binocular regions or background. In a two-panel random dot stereogram the monocular region was filled with texture either similar or different to the far panel or left blank. In unpaired background stereograms the monocular region either matched the background or was different in colour or texture and in phantom stereograms the monocular region matched the partially occluded object or was a different colour or texture. In all three cases depth was considerably impaired when the monocular texture did not match either the background or the more distant surface. The content and context of monocular regions as well as their position are important in determining their role as occlusion cues and thus in three-dimensional layout. We compare coincidence and accidental view accounts of these effects. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.
Resumo:
The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
The oxovanadium(IV) complexes [VO(acac)(2)(Hpz)].HC(pz)(3) 1.HC(pz)(3) (acac= acetylacetonate, Hpz = pyrazole, pz = pyrazoly1) and [VOCl2{HOCH2C(pz)(3)}] 2 were obtained from reaction of [VO(acac)(2)] with hydrotris(1-pyrazolyl)methane or of VCl(3)with 2,2,2-tris(1-pyrazolyl)ethanol. The compounds were characterized by elemental analysis, IR, Far-IR and EPR spectroscopies, FAB or ESI mass-spectrometry and, for 1, by single crystal X-ray diffraction analysis. 1 and 2 exhibit catalytic activity for the oxidation of cyclohexane to the cyclohexanol and cyclohexanone mixture in homogeneous system (TONS up to 1100) under mild conditions (NCMe, 24h, room temperature) using benzoyl peroxide (BPO), tert-butyl hydroperoxide (TBHP), m-chloroperoxybenzoic acid (mCPBA), hydrogen peroxide or the urea-hydrogen peroxide adduct (UHP) as oxidants. 1 and 2 were also immobilized on a polydimethylsiloxane membrane (1-PDMS or 2-PDMS) and the systems acted as supported catalysts for the cyclohexane oxidation using the above oxidants (TONs up to 620). The best results were obtained with mCPBA or BP0 as oxidant. The effects of various parameters, such as the amount of catalyst, nitric acid, reaction time, type of oxidant and oxidant-to-catalyst molar ratio, were investigated, for both homogeneous and supported systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Gold(III) complexes of type [AuCl2{eta(2)-RC(R'pz)(3)}]Cl [R = R' = H (1), R = CH2OH, R' = H (2) and R = H, R' = 3,5-Me-2(3), pz = pyrazol-1-yl] were supported on carbon materials (activated carbon, carbon xerogel and carbon nanotubes) and used for the oxidation of cyclohexane to cyclohexanol and cyclohexanone, with aqueous H2O2, under mild conditions.
Resumo:
This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).
Resumo:
Purpose - This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose (E) for pelvis using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Methods and materials - To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60–120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the two alternative forced choice (2AFC) visual grading software. PCXMC software was used to estimate E. Results - A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p > 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. E results show a statistically significant decrease (p = 0.000) on the 75th quartile from 0.37 mSv at 60 kVp to 0.13 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion - Using the 10 kVp rule, no significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant E reduction is observed.
Resumo:
Background - Pelvis and hip radiography are consistently found to be amongst the highest contributors to the collective effective dose (E) in all ten DOSE DATAMED countries in Europe, representing 2.8 to 9.4% of total collective dose (S) in the TOP 20 exams list. The level of image quality should provide all the diagnostic information in order not to jeopardise the diagnosis, but being able to provide the needed clinical information with the minimum dose. A recent study suggests further research to determine whether the “10 kVp rule” would have value for a range of examinations using Computed Radiography (CR) systems. As a “rule of thumb” increasing the kVp by 10 whilst halving the mAs is suggested to give a similar perceptual image quality when compared to the original exposure factors. Aims - In light of the 10kVp rule, this study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and E for pelvis imaging using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Research questions - Does the 10kVp rule works for the pelvis in relation to image quality in a CR system? Does the image quality differs when the AEC is used instead of manual mode using the 10kVp rule and how this impacts on E?
Resumo:
Human virtual phantoms are being widely used to simulate and characterize the behavior of different organs, either in diagnosis stages but also to enable foreseeing the therapeutic effects obtained on a certain patient. In the present work a typical patient’s heart was simulated using XCAT2©, considering the possibility of a lesion and/or anatomical alteration being affecting the myocardium. These simulated images, were then used to carry out a set of parametric studies using Matlab©. Although performed in controlled sceneries, these studies are very important to understand and characterize the performance of the methodologies used, as well as to determine to what extent the relations between the perturbation introduced at the myocardium and the resulting simulated images can be considered conclusive.
Resumo:
Introduction: multimodality environment; requirement for greater understanding of the imaging technologies used, the limitations of these technologies, and how to best interpret the results; dose optimization; introduction of new techniques; current practice and best practice; incidental findings, in low-dose CT images obtained as part of the hybrid imaging process, are an increasing phenomenon with advancing CT technology; resultant ethical and medico-legal dilemmas; understanding limitations of these procedures important when reporting images and recommending follow-up; free-response observer performance study was used to evaluate lesion detection in low-dose CT images obtained during attenuation correction acquisitions for myocardial perfusion imaging, on two hybrid imaging systems.