904 resultados para headwater stream
Resumo:
The fishes of the present study were collected in Passa Cinco stream, a main river of Corumbatai river basin, Tiete drainage. Five sites were selected in that stream, downstream from headwater to its mouth, and six samplings were performed using the following fishery equipment: a sieve, electric fishery equipment, gill nets and fish-traps. 5082 individuals, 62 species, 18 families and 6 orders were captured. The orders Characiformes and Siluriformes were the most representative and the families Characidae and Loricariidae presented the largest in number of species.
Resumo:
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.
Resumo:
The mean transit time (MTT) of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley) were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks) and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.
Resumo:
Lesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HCl) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and MP and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4.542 meq Ca, 1, 184 meq Mg, and 2,329 meq Al over a 45 in long and I in wide stream segment, smaller amounts of Be. Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F- occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42- but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al. respectively, in a 4-hour recovery period. Desorption of SO42- occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil-soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream Sediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data.
Resumo:
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ∆14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = −22.2 ± 3 ‰; ∆14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = −12.4 ± 1 ‰; ∆14C = −270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = −5.7 ± 2.5 ‰; ∆14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (∆14C = −248 to −202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (∆14C = −90 to −88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (−297 to −244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.
Resumo:
[1] Photochemical and microbial transformations of DOM were evaluated in headwater streams draining forested and human-modified lands (pasture, cropland, and urban development) by laboratory incubations. Changes in DOC concentrations, DOC isotopic signatures, and DOM fluorescence properties were measured to assess the amounts, sources, ages, and properties of reactive and refractory DOM under the influence of photochemistry and/or bacteria. DOC in streams draining forest-dominated watersheds was more photoreactive than in streams draining mostly human-modified watersheds, possibly due to greater contributions of terrestrial plant-derived DOC and lower amounts of prior light exposure in forested streams. Overall, the percentage of photoreactive DOC in stream waters was best predicted by the relative content of terrestrial fluorophores. The bioreactivity of DOC was similar in forested and human-modified streams, but variations were correlated with temperature and may be further controlled by the diagenetic status of organic matter. Alterations to DOC isotopes and DOM fluorescence properties during photochemical and microbial incubations were similar between forested and human-modified streams and included (1) negligible effects of microbial alteration on DOC isotopes and DOM fluorescence properties, (2) selective removal of 13C-depleted and 14C-enriched DOC under the combined influence of photochemical and microbial processes, and (3) photochemical alteration of DOM resulting in a preferential loss of terrestrial humic fluorescence components relative to microbial fluorescence components. This study provides a unique comparison of DOC reactivity in a regional group of streams draining forested and human-modified watersheds and indicates the importance of land use on the photoreactivity of DOC exported from upstream watersheds.
Resumo:
This paper focuses on the development and delivery of a core construction management (CM) unit, which forms the capstone of a four-unit CM stream in an undergraduate programme in the Faculty of Built Environment and Engineering at the Queensland University of Technology. UDB410 (Construction Management) is a final year unit that consolidates skills students have learned throughout their degree, hopefully graduating them as work-ready construction managers. It was developed in consultation with the Queensland Chapter of the Australian Institute of Building (AIB) and is a final year unit in the undergraduate Bachelor of Urban Development (CM) course. The unit uses various tools such as the OSIRIS business database (Bureau van Dijk Electronic Publishing, 2009), the AROUSAL (UK Version) construction business simulation (Lansley, 2009) and the Denison Organisational Culture Survey (Denison, 2000) to facilitate the development of skills in managing a construction company. The objectives of the paper are: • To track the rationale and development of the UDB410 unit sand describe the way in which this final year unit integrates learning from other parts of the course within which it is located as well as capping-off the CM stream of core units; • To highlight the difficulties of blending a balance of technology and management in a single unit; and • To explain how partnering with the construction industry benefited the learning quality of the unit.
Resumo:
This paper provides a fresh analysis of the widely-used Common Scrambling Algorithm Stream Cipher (CSA-SC). Firstly, a new representation of CSA-SC with a state size of only 89 bits is given, a significant reduction from the 103 bit state of a previous CSA-SC representation. Analysis of this 89-bit representation demonstrates that the basis of a previous guess-and-determine attack is flawed. Correcting this flaw increases the complexity of that attack so that it is worse than exhaustive key search. Although that attack is not feasible, the reduced state size of our representation makes it obvious that CSA-SC is vulnerable to several generic attacks, for which feasible parameters are given.
Resumo:
Authenticated Encryption (AE) is the cryptographic process of providing simultaneous confidentiality and integrity protection to messages. AE is potentially more efficient than applying a two-step process of providing confidentiality for a message by encrypting the message and in a separate pass, providing integrity protection by generating a Message Authentication Code (MAC) tag. This paper presents results on the analysis of three AE stream ciphers submitted to the recently completed eSTREAM competition. We classify the ciphers based on the methods the ciphers use to provide authenticated encryption and discuss possible methods for mounting attacks on these ciphers.
Resumo:
Dragon is a word-based stream cipher. It was submitted to the eSTREAM project in 2005 and has advanced to Phase 3 of the software profile. This paper discusses the Dragon cipher from three perspectives: design, security analysis and implementation. The design of the cipher incorporates a single word-based non-linear feedback shift register and a non-linear filter function with memory. This state is initialized with 128- or 256-bit key-IV pairs. Each clock of the stream cipher produces 64 bits of keystream, using simple operations on 32-bit words. This provides the cipher with a high degree of efficiency in a wide variety of environments, making it highly competitive relative to other symmetric ciphers. The components of Dragon were designed to resist all known attacks. Although the design has been open to public scrutiny for several years, the only published attacks to date are distinguishing attacks which require keystream lengths greatly exceeding the stated 264 bit maximum permitted keystream length for a single key-IV pair.