791 resultados para gluteus maximus muscle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective was to evaluate serum activity of the enzymes creatine kinase (CK) and aspartate aminotransferase (AST), which are leakage enzymes responsive to muscle injury, of athletic horses that underwent muscle biopsy and incremental jump test (IJT) involving incremental jumps. The animals were grouped as follows: the first group, horses with history of superior performance (SP); the second, with a history of inferior performance (IP); and lastly, a control group (CG). All groups underwent biopsy of the gluteus medius muscle, while groups SP and IP were also submitted to the incremental jump test (IJT) 24 hours after biopsy. The IJT consisted of three stages with 40 jumps each, where jump height increased progressively, from 40 to 60 and last, 80cm. Blood samples were drawn before biopsy, and 6 and 24 hours after the exercise as well. The levels of CK serum activity increased 6 hours after exercise and decreased 24 hours later in all groups, including CG. AST activity did not increase after biopsy and exercise. There was no increase of both enzyme activities that could be attributed to the exercise, possibly due to exercise short duration and/or low intensity. We conclude that the muscle biopsy was able to show that there was enough stimulus to cause CK enzyme leakage into the plasma, and consequent detection of increased serum activity, while the incremental jump test did not.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Scarring or detachment of the hip abductors, particularly of the gluteus medius, from their insertion may lead to severe abductor weakness, recurrent dislocations, pain, and diminished quality of life. We performed a retrospective study to evaluate whether vastus lateralis shift is associated with satisfactory results and low rate of complications. Eleven adults underwent vastus lateralis shift to bridge a well-documented abductor muscles' insertion defect. Preoperative and postoperative hip functions were assessed applying the Merle d'Aubigne score, British Medical Council scale, and Visual Analog Scale. Significant postoperative improvement was noted in mean Merle d'Aubigne score, gluteus medius muscle force, and quality of life. Vastus lateralis shift represents a viable treatment option for hip abductor deficiency, significantly improving abductor strength and overall quality of life.
Resumo:
OBJECTIVE: To describe the advantages and surgical technique of a trochanteric flip osteotomy in combination with a Kocher-Langenbeck approach for the treatment of selected acetabular fractures. DESIGN: Consecutive series, teaching hospital. METHODS: Through mobilization of the vastus lateralis muscle, a slice of the greater trochanter with the attached gluteus medius muscle can be flipped anteriorly. The gluteus minimus muscle can then be easily mobilized, giving free access to the posterosuperior and superior acetabular wall area. Damage to the abductor muscles by vigorous retraction can be avoided, potentially resulting in less ectopic ossification. Ten consecutive cases of acetabular fractures treated with this approach are reported. In eight cases, an anatomic reduction was achieved; in the remaining two cases with severe comminution, the reduction was within one to three millimeters. The trochanteric fragment was fixed with two 3.5-millimeter cortical screws. RESULTS: All osteotomies healed in anatomic position within six to eight weeks postoperatively. Abductor strength was symmetric in eight patients and mildly reduced in two patients. Heterotopic ossification was limited to Brooker classes 1 and 2 without functional impairment at an average follow-up of twenty months. No femoral head necrosis was observed. CONCLUSION: This technique allows better visualization, more accurate reduction, and easier fixation of cranial acetabular fragments. Cranial migration of the greater trochanter after fixation with two screws is unlikely to occur because of the distal pull of the vastus lateralis muscle, balancing the cranial pull of the gluteus medius muscle.
Resumo:
PURPOSE Advancement of the greater trochanter alters the function of the gluteus medius muscle. However, with the exception of clinical studies and biomechanical lever arm studies, no publications that analyze the consequences of advancement of the greater trochanter on the muscle function exist. The aim of the study was to analyze the mechanical changes of gluteus medius after osteotomy of the greater trochanter in a lab setting. METHODS An anatomical study of origin and insertion of the gluteus medius was carried out on four hips. Based on the dissections, a string model was developed dividing the muscle into five sectors. Changes in muscle fiber length were measured for every 10° of flexion, internal and external rotation and abduction with the trochanter in anatomic, proximalized and distalized positions. RESULTS Distalization of the trochanter leads to an imbalance of muscle action, moving the isometric sector of the muscle anteriorly with more muscle sectors being active during flexion and less during extension. Stretching of the muscle increases passive forces but decreases the force generation capacity of the muscle and at the same time increased muscle fiber excursion may require more energy consumption, which may explain earlier fatigue of the abductor musculature after distalization of the trochanter. For abduction, distalization of the muscle attachment leads to a change in contraction pattern from isometric to isotonic. Optimal balancing and excursion of the muscle is when the tip of the greater trochanter is at level with the hip rotation center. CONCLUSIONS In hips with high riding trochanter, the optimal position is at the level of the center of hip rotation. Excessive distalization should be avoided. As the conclusions and considerations are based on a lab setting, transfer to clinical practice may not necessarily apply.
Resumo:
Older adults may have trouble when performing activities of daily living due to decrease in physical strength and degradation of neuromotor and musculoskeletal function. Motor activation patterns during Lateral Step Down and Step Up from 4-inch and 8-inch step heights was assessed in younger (n=8, 24.4 years) and older adults (n=8, 58.9 years) using joint angle kinematics and electromyography of lower extremity muscles. Ground reaction forces were used to ascertain the loading, stabilization and unloading phases of the tasks. Older adults had an altered muscle activation sequence and significantly longer muscle bursts during loading for the tibialis anterior, gastrocnemius, vastus medialis, bicep femoris, gluteus medius and gluteus maximus muscles of the stationary leg. They also demonstrated a significantly larger swing time (579.1 ms vs. 444.8 ms) during the step down task for the moving leg. The novel data suggests presence of age-related differences in motor coordination during lateral stepping.
Resumo:
The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia