914 resultados para glow discharge
Resumo:
Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
This study evaluated the potential of plasma treatments to modify the surface chemistry and hydrophobicity of a denture base acrylic resin to reduce the Candida glabrata adhesion. Specimens (n=54) with smooth surfaces were made and divided into three groups (n=18): control - non-treated; experimental groups - submitted to plasma treatment (Ar/50W; AAt/130W). The effects of these treatments on chemical composition and surface topography of the acrylic resin were evaluated. Surface free energy measurements (SFE) were performed after the treatments and after 48h of immersion in water. For each group, half (n=9) of the specimens were preconditionated with saliva before the adhesion assay. The number of adhered C. glabrata was evaluated by cell counting after crystal violet staining. The Ar/50W and AAt/130W treatments altered the chemistry composition, hydrophobicity and topography of acrylic surface. The Ar/50W group showed significantly lower C. glabrata adherence than the control group, in the absence of saliva. After preconditioning with saliva, C. glabrata adherence in experimental and control groups did not differ significantly. There were significant changes in the SFE after immersion in water. The results demonstrated that Ar/50W treated surfaces have potential for reducing C. glabrata adhesion to denture base resins and deserve further investigation, especially to tailor the parameters to prolong the increased wettability. © 2012 Blackwell Verlag GmbH.
Resumo:
"Contract AT-30-1-Gen-366."
Resumo:
We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
The effect of ambipolar fluxes on nanoparticle charging in a typical low-pressure parallel-plate glow discharge is considered. It is shown that the equilibrium values of the nanoparticle charge in the plasma bulk and near-electrode areas are strongly affected by the ratio S ath i of the ambipolar flux and the ion thermal velocities. Under typical experimental conditions the above ratio is neither S ath i≪ 1 nor S ath i≫1, which often renders the commonly used approximations of the purely thermal or "ion wind" ion charging currents inaccurate. By using the general approximation for the ambipolar drift-affected ion flux on the nanoparticle surface, it appears possible to obtain more accurate values of the nanoparticle charge that usually deviate within 10-25 % from the values obtained without a proper accounting for the ambipolar ion fluxes. The implications of the results obtained for glow discharge modeling and nanoparticle manipulation in low-pressure plasmas are discussed.