907 resultados para generalised inverse.
Resumo:
This paper demonstrates a model of self-regulation based on a qualitative research project with adult learners undertaking an undergraduate degree. The narrative about the participant’s life transitions, co-constructed with the researcher, yielded data about their generalised self-efficacy and resulted in a unique self-efficacy narrative for each participant. A model of self-regulation is proposed with potential applications for coaching, counselling and psychotherapy. A narrative method was employed to construct narratives about an individual’s self-efficacy in relation to their experience of learning and life transitions. The method involved a cyclical and iterative process using qualitative interviews to collect life history data from participants. In addition, research participants completed reflective homework tasks, and this data was included in the participant’s narratives. A highly collaborative method entailed narratives being co-constructed by researcher and research participants as the participants were guided in reflecting on their experience in relation to learning and life transitions; the reflection focused on behaviour, cognitions and emotions that constitute a sense of self-efficacy. The analytic process used was narrative analysis, in which life is viewed as constructed and experienced through the telling and retelling of stories and hence the analysis is the creation of a coherent and resonant story. The method of constructing self-efficacy narratives was applied to a sample of mature aged students starting an undergraduate degree. The research outcomes confirmed a three-factor model of self-efficacy, comprising three interrelated stages: initiating action, applying effort, and persistence in overcoming difficulties. Evaluation of the research process by participants suggested that they had gained an enhanced understanding of self-efficacy from their participation in the research process, and would be able to apply this understanding to their studies and other endeavours in the future. A model of self-regulation is proposed as a means for coaches, counsellors and psychotherapists working from a narrative constructivist perspective to assist clients facing life transitions by helping them generate selfefficacious cognitions, emotions and behaviour.
Resumo:
In the rate-based flow control for ATM Available Bit Rate service, fairness is an important requirement, i.e. each flow should be allocated a fair share of the available bandwidth in the network. Max–min fairness, which is widely adopted in ATM, is appropriate only when the minimum cell rates (MCRs) of the flows are zero or neglected. Generalised max–min (GMM) fairness extends the principle of the max–min fairness to accommodate MCR. In this paper, we will discuss the formulation of the GMM fair rate allocation, propose a centralised algorithm, analyse its bottleneck structure and develop an efficient distributed explicit rate allocation algorithm to achieve the GMM fairness in an ATM network. The study in this paper addresses certain theoretical and practical issues of the GMM fair rate allocation.
Resumo:
In this work two different finite volume computational strategies for solving a representative two-dimensional diffusion equation in an orthotropic medium are considered. When the diffusivity tensor is treated as linear, this problem admits an analytic solution used for analysing the accuracy of the proposed numerical methods. In the first method, the gradient approximation techniques discussed by Jayantha and Turner [Numerical Heat Transfer, Part B: Fundamentals, 40, pp.367–390, 2001] are applied directly to the
A Modified inverse integer Cholesky decorrelation method and the performance on ambiguity resolution
Resumo:
One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.
Resumo:
Abstract—Computational Intelligence Systems (CIS) is one of advanced softwares. CIS has been important position for solving single-objective / reverse / inverse and multi-objective design problems in engineering. The paper hybridise a CIS for optimisation with the concept of Nash-Equilibrium as an optimisation pre-conditioner to accelerate the optimisation process. The hybridised CIS (Hybrid Intelligence System) coupled to the Finite Element Analysis (FEA) tool and one type of Computer Aided Design(CAD) system; GiD is applied to solve an inverse engineering design problem; reconstruction of High Lift Systems (HLS). Numerical results obtained by the hybridised CIS are compared to the results obtained by the original CIS. The benefits of using the concept of Nash-Equilibrium are clearly demonstrated in terms of solution accuracy and optimisation efficiency.
Resumo:
The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared with adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression, respectively. This links BRN2 as an activator, and conversely, MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense-ablated cell lines decreased the melanoma sphere-forming capability, cell adhesion during 3D-spheroid formation and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere-culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than the growth as adherent melanoma cells.
Resumo:
In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.
Resumo:
We report an inverse Spatially Offset Raman Spectrometer capable of non-invasively identifying packaged substances from a distance. Usual inverse SORS spectrometer has a non-contact distance that is equivalent to the focal distance of the collection system. In this work we demonstrate the defocused geometry with a modified data analysis method capable of making inverse SORS measurements from a distance greater than the focal distance of the collection lenses. With the defocused geometry we were able to detect acetaminophen, concealed inside a 2 mm thick plastic bottle, at a non-contact distance of 30 cm.
Resumo:
An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.
Resumo:
The mechanical conditions in the repair tissues are known to influence the outcome of fracture healing. These mechanical conditions are determined by the stiffness of fixation and limb loading. Experimental studies have shown that there is a range of beneficial fixation stiffness for timely healing and that fixation stiffness that is either too flexible or too stiff impairs callus healing. However, much less is known about how mechanical conditions influence the biological processes that make up the sequence of bone repair and if indeed mechanical stimulation is required at all stages of repair. Secondary bone healing occurs through a sequence of events broadly characterised by inflammation, proliferation, consolidation and remodelling. It is our hypothesis that a change in fixation stiffness from very flexible to stiff can shorten the time to healing relative to constant fixation stiffness. Flexible fixation has the benefit of promoting greater callus formation and needs to be applied during the proliferative stage of repair. The greater callus size helps to stabilize the fragments earlier allowing mineralization to occur faster. Together with stable/rigid fixation applied during the latter stage of repair to ensure mineralization of the callus. The predicted benefits of inverse dynamization are shortened healing in comparison to very flexible fixation and healing time comparable or faster than stable fixation with greater callus stiffness.