984 resultados para fluorescent in situ hybridization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial rDNA sequences of Prorocentrum minimum and Takayama pulchella were amplified, cloned and sequenced. and these sequence data were deposited in the GenBank. Eight oligonucleotide probes (DNA probes) were designed based on the sequence analysis. The probes were employed to detect and identify P. minimum and T. pulchella in unialgal and mixed algal samples with a fluorescence in situ hybridization method using flow cytometry. Epifluorescence micrographs showed that these specific probes labeled with fluorescein isothiocyanate entered the algal cells and bound to target sequences, and the fluorescence signal resulting from whole-cell hybridization varied from probe to probe. These DNA probes and the hybridization protocol we developed were specific and effective for P. minimum and T. pulchella, without any specific binding to other algal species. The hybridization efficiency of different probes specific to P. minimum was in the order: PM18S02 > PM28S02 > PM28S01 > PM18S01, and that of the probes specific to T. pulchella was TP18S02 > TP28S01 > TP28S02 > TP18S01. The different hybridization efficiency of the DNA probes could also be shown in the fluorescent signals between the labeled and unlabeled cells demonstrated using flow cytometry. The DNA probes PM18S02, PM28S02; TP18S02 and TP28S01, and the protocol, were also useful for the detection of algae in natural samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterosigma akashiwo (Hada) is a fragile, fish-killing alga. Efforts to understand and prevent blooms due to this harmful species to mitigate the impact on aquaculture require the development of methods for rapid and precise identification and quantification, so that adequate warning of a harmful algal bloom may be given. Here, we report the development and application of rRNA and rDNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH) to aid in the detection and enumeration of H. akashiwo. The designed probes were species specific, showing no cross-reactivity with four common HAB causative species: Prorocentrum micans Ehrenberg, P. minimum (Pavillard) Schiller, Alexandrium tarmarense (Lebour) Balech, and Skeletonema costatum (Greville) Cleve, or with four other microalgae, including Gymnodinium sp. Stein, Platy-monas cordiformis (Karter) Korsch, Skeletonema sp.1 Greville and Skeletonema sp.2. The rRNA-targeted probe hybridized to cytoplasmic rRNA, showing strong green fluorescence throughout the whole cell, while cells labeled by rDNA-targeted probe exhibited exclusively fluorescent nucleus. The detection protocols were optimized and could be completed within an hour. For rRNA and rDNA probes, about a corresponding 80% and 70% of targeted cells could be identified and quantified during the whole growth circle, despite the inapparent variability in the average probe reactivity. The established FISH was proved promising for specific, rapid, precise, and quantitative detection of H. akashiwo. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explicitly tested for the first time the ‘environmental specificity’ of traditional 16S rRNAtargeted fluorescence in situ hybridization (FISH) through comparison of the bacterial diversity actually targeted in the environment with the diversity that should be exactly targeted (i.e. without mismatches) according to in silico analysis. To do this, we exploited advances in modern Flow Cytometry that enabled improved detection and therefore sorting of sub-micron-sized particles and used probe PSE1284 (designed to target Pseudomonads) applied to Lolium perenne rhizosphere soil as our test system. The 6-carboxyfluorescein (6-FAM)-PSE1284-hybridised population, defined as displaying enhanced green fluorescence in Flow Cytometry, represented 3.51±1.28% of the total detected population when corrected using a nonsense (NON-EUB338) probe control. Analysis of 16S rRNA gene libraries constructed from Fluorescence Activated Cell Sorted (FACS) -recovered fluorescent populations (n=3), revealed that 98.5% (Pseudomonas spp. comprised 68.7% and Burkholderia spp. 29.8%) of the total sorted population was specifically targeted as evidenced by the homology of the 16S rRNA sequences to the probe sequence. In silico evaluation of probe PSE1284 with the use of RDP-10 probeMatch justified the existence of Burkholderia spp. among the sorted cells. The lack of novelty in Pseudomonas spp. sequences uncovered was notable, probably reflecting the well-studied nature of this functionally important genus. To judge the diversity recorded within the FACS-sorted population, rarefaction and DGGE analysis were used to evaluate, respectively, the proportion of Pseudomonas diversity uncovered by the sequencing effort and the representativeness of the Nycodenz® method for the extraction of bacterial cells from soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unusual feature of the mammalian genome is the number of genes exhibiting monoallelic expression. Recently random monoallelic expression of autosomal genes has been reported for olfactory and Ly-49 NK receptor genes, as well as for Il-2, Il-4 and Pax5. RNA fluorescence in situ hybridization (FISH) has been exploited to monitor allelic expression by visualizing the number of sites of transcription in individual nuclei. However, the sensitivity of this technique is difficult to determine for a given gene. We show that by combining DNA and RNA FISH it is possible to control for the hybridization efficiency and the accessibility and visibility of fluorescent probes within the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the article 'Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis' (Milinovich et al., 2007), it is found that with reference to Horse 1, the histological signs of laminitis were first observed at 12 h post-oligofructose administration, and not 30 h as was indicated in the Results section under the subheading 'Induction of Laminitis' and in Fig. 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common carp Cyprinus carpio genomic DNA repetitive sequence CR1 has been DIG-labeled and hybridized in situ against chromosomes of red common carp (Cyprinus carpio L. Xingguo red var.). It is found that the repetitive sequence CR1 is mainly localized at the centromeric regions of chromosomes of the red common carp, The application of the chromosomal in situ hybridization technique on fish and the relationship between CR1 repetitive sequence distribution and its function have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly repetitive satellite sequence was previously identified in the Pacific oyster Crassostrea gigas Thunberg. The sequence has 168 bp per unit, present in tandem repeats, and accounts for 1% to 4% of the genome. We studied the chromosomal location of this satellite sequence by fluorescence in situ hybridization (FISH), A probe was made by polymerase chain reaction and incorporation of digoxigenin-11-dUTP. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. FISH signals were located at centromeric regions of 7 pairs of the Pacific oyster chromosomes. No interstitial site was found. Signals were strong and consistent on chromosomes 1, 2, 4, and 7, but weak or variable oil chromosomes 5, 8, and 10. No signal was observed on chromosomes 3, 6, and 9. Our results showed that this sequence is clearly a centromeric satellite, disputing its previous assignment to the telomeric and submetacentric regions of 2 chromosomes. No signal was detected in the American oyster (Crassostrea virginica Gmelin).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In amphioxus embryos, the nascent and early mesoderm (including chorda-mesoderm) was visualized by expression of a Brachyury gene (AmBra-2). A band of mesoderm is first detected encircling the earliest (vegetal plate stage) gastrula sub-equatorially. Soon thereafter, the vegetal plate invaginates. resulting in a cap-shaped gastrula with the mesoderm localized at the blastoporal lip and completely encircling the blastopore. As the gastrula stage progresses, DiI (a vital dye) labeling demonstrates that the entire mesoderm is internalized by a slight involution of the epiblast into the hypoblast all around the perimeter of the blastopore. Subsequently. during the early neurula stage, the internalized mesoderm undergoes anterior extension mid-dorsally (as notochord) and dorsolaterally (in paraxial regions when segments will later form). By the late neurula stage, AmBra-2 is no longer transcribed throughout the mesoderm as a whole; instead. expression is detectable only in the posterior mesoderm and in the notochord, but not in par axial mesoderm where definitive somites have formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)(n) repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective I showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA),, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1 > P2 > P3 > P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.