1000 resultados para flow recirculation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

El principal objetivo de este trabajo es aportar conocimiento para contestar la pregunta: ¿hasta que punto los ensayos en túnel aerodinámico pueden contribuir a determinar las características que afectan la respuesta dinámica de los aerogeneradores operando en terreno complejo?. Esta pregunta no es nueva, de hecho, el debate en la comunidad científica comenzó en el primer tercio del siglo pasado y aún está intensamente vivo. El método generalmente aceptado para enfrentar el mencionado problema consiste en analizar un caso de estudio determinado en el cual se aplican tanto ensayos a escala real como análisis computacionales y ensayos en túnel aerodinámico. Esto no es ni fácil ni barato. Esta es la razón por la cual desde el experimento de Askervein en 1988, los modelizadores del flujo atmosférico tuvieron que esperar hasta 2007 a que el experimento de Bolund fuese puesto en marcha con un despliegue de medios técnicos equivalentes (teniendo en cuenta la evolución de las tecnologías de sensores y computación). El problema contempla tantos aspectos que ambas experiencias fueron restringidas a condiciones de atmósfera neutra con efectos de Coriolis despreciables con objeto de reducir la complejidad. Este es el contexto en el que se ha desarrollado la presente tesis doctoral. La topología del flujo sobre la isla de Bolund ha sido estudiada mediante la reproducción del experimento de Bolund en los túneles aerodinámicos A9 y ACLA16 del IDR. Dos modelos de la isla de Bolund fueron fabricados a dos escalas, 1:230 y 1:115. El flujo de entrada en el túnel aerodinámico simulando la capa límite sin perturbar correspondía a régimen de transición (transitionally rough regime) y fue usado como situación de referencia. El modelo a escala 1:230 fue ensayado en el túnel A9 para determinar la presión sobre su superficie. La distribución del coeficiente de presión sobre la isla proporcionó una visualización y estimación de una región de desprendimiento sobre el pequeño acantilado situado al frente de la misma. Las medidas de presión instantánea con suficiente grado de resolución temporal pusieron de manifiesto la no estacionariedad en la región de desprendimiento. El modelo a escala 1:115 fue ensayado utilizando hilo caliente de tres componentes y un sistema de velocimetría por imágenes de partículas de dos componentes. El flujo fue caracterizado por el ratio de aceleración, el incremento normalizado de energía cinética turbulenta y los ángulos de inclinación y desviación horizontal. Los resultados a lo largo de la dirección 270°y alturas de 2 m y 5 m presentaron una gran similitud con los resultados a escala real del experimento de Bolund. Los perfiles verticales en las localizaciones de las torres meteorológicas mostraron un acuerdo significativo con los resultados a escala real. El análisis de los esfuerzos de Reynolds y el análisis espectral en las localizaciones de los mástiles meteorológicos presentaron niveles de acuerdo variados en ciertas posiciones, mientras que en otras presentaron claras diferencias. El mapeo horizontal del flujo, para una dirección de viento de 270°, permitió caracterizar el comportamiento de la burbuja intermitente de recirculación sobre el pequeño acantilado existente al frente de la isla así como de la región de relajación y de la capa de cortadura en la región corriente abajo de Bolund. Se realizaron medidas de velocidad con alta resolución espacial en planos perpendiculares a la dirección del flujo sin perturbar. Estas medidas permitieron detectar y caracterizar una estructura de flujo similar a un torbellino longitudinal con regiones con altos gradientes de velocidad y alta intensidad de turbulencia. Esta estructura de flujo es, sin duda, un reto para los modelos computacionales y puede considerarse un factor de riesgo para la operación de los aerogeneradores. Se obtuvieron y analizaron distribuciones espaciales de los esfuerzos de Reynolds mediante 3CHW y PIV. Este tipo de parámetros no constituyen parte de los resultados habituales en los ensayos en túnel sobre topografías y son muy útiles para los modelizadores que utilizan simulación de grades torbellinos (LES). Se proporciona una interpretación de los resultados obtenidos en el túnel aerodinámico en términos de utilidad para los diseñadores de parques eólicos. La evolución y variación de los parámetros del flujo a lo largo de líneas, planos y superficies han permitido identificar como estas propiedades del flujo podrían afectar la localización de los aerogeneradores y a la clasificación de emplazamientos. Los resultados presentados sugieren, bajo ciertas condiciones, la robustez de los ensayos en túnel para estudiar la topología sobre terreno complejo y su comparabilidad con otras técnicas de simulación, especialmente considerando el nivel de acuerdo del conjunto de resultados presentados con los resultados a escala real. De forma adicional, algunos de los parámetros del flujo obtenidos de las medidas en túnel son difícilmente determinables en ensayos a escala real o por medios computacionales, considerado el estado del arte. Este trabajo fue realizado como parte de las actividades subvencionadas por la Comisión Europea como dentro del proyecto FP7-PEOPLE-ITN-2008WAUDIT (Wind Resource Assessment Audit and Standardization) dentro de la FP7 Marie-Curie Initial Training Network y por el Ministerio Español de Economía y Competitividad dentro del proyecto ENE2012-36473, TURCO (Determinación en túnel aerodinámico de la distribución espacial de parámetros estadísticos de la turbulencia atmosférica sobre topografías complejas) del Plan Nacional de Investigación (Subprograma de investigación fundamental no orientada 2012). El informe se ha organizado en siete capítulos y un conjunto de anexos. En el primer capítulo se introduce el problema. En el capítulo dos se describen los medios experimentales utilizados. Seguidamente, en el capítulo tres, se analizan en detalle las condiciones de referencia del principal túnel aerodinámico utilizado en esta investigación. En el capítulo tres se presentan resultados de ensayos de presión superficial sobre un modelo de la isla. Los principales resultados del experimento de Bolund se reproducen en el capítulo cinco. En el capítulo seis se identifican diferentes estructuras del flujo sobre la isla y, finalmente, en el capitulo siete, se recogen las conclusiones y una propuesta de lineas de trabajo futuras. ABSTRACT The main objective of this work is to contribute to answer the question: to which extend can the wind tunnel testing contribute to determine the flow characteristics that affect the dynamic response of wind turbines operating in highly complex terrains?. This question is not new, indeed, the debate in the scientific community was opened in the first third of the past century and it is still intensely alive. The accepted approach to face this problem consists in analysing a given case study where full-scale tests, computational modelling and wind tunnel testing are applied to the same topography. This is neither easy nor cheap. This is is the reason why since the Askervein experience in 1988, the atmospheric flow modellers community had to wait till 2007 when the Bolund experiment was setup with a deployment of technical means equivalent (considering the evolution of the sensor and computing techniques). The problem is so manifold that both experiences were restricted to neutral conditions without Coriolis effects in order to reduce the complexity. This is the framework in which this PhD has been carried out. The flow topology over the Bolund Island has been studied by replicating the Bolund experiment in the IDR A9 and ACLA16 wind tunnels. Two mock-ups of the Bolund island were manufactured at two scales of 1:230 and 1:115. The in-flow in the empty wind tunnel simulating the incoming atmospheric boundary layer was in the transitionally rough regime and used as a reference case. The 1:230 model was tested in the A9 wind tunnel to measure surface pressure. The mapping of the pressure coefficient across the island gave a visualisation and estimation of a detachment region on the top of the escarpment in front of the island. Time resolved instantaneous pressure measurements illustrated the non-steadiness in the detachment region. The 1:115 model was tested using 3C hot-wires(HW) and 2C Particle Image Velocimetry(PIV). Measurements at met masts M3, M6, M7 and M8 and along Line 270°were taken to replicate the result of the Bolund experiment. The flow was characterised by the speed-up ratio, normalised increment of the turbulent kinetic energy, inclination angle and turning angle. Results along line 270°at heights of 2 m and 5 m compared very well with the full-scale results of the Bolund experiment. Vertical profiles at the met masts showed a significant agreement with the full-scale results. The analysis of the Reynolds stresses and the spectral analysis at the met mast locations gave a varied level of agreement at some locations while clear mismatch at others. The horizontal mapping of the flow field, for a 270°wind direction, allowed to characterise the behaviour of the intermittent recirculation bubble on top of the front escarpment followed by a relaxation region and the presence of a shear layer in the lee side of the island. Further detailed velocity measurements were taken at cross-flow planes over the island to study the flow structures on the island. A longitudinal vortex-like structure with high mean velocity gradients and high turbulent kinetic energy was characterised on the escarpment and evolving downstream. This flow structure is a challenge to the numerical models while posing a threat to wind farm designers when siting wind turbines. Spatial distribution of Reynold stresses were presented from 3C HW and PIV measurements. These values are not common results from usual wind tunnel measurements and very useful for modellers using large eddy simulation (LES). An interpretation of the wind tunnel results in terms of usefulness to wind farm designers is given. Evolution and variation of the flow parameters along measurement lines, planes and surfaces indicated how the flow field could affect wind turbine siting. Different flow properties were presented so compare the level of agreement to full-scale results and how this affected when characterising the site wind classes. The results presented suggest, under certain conditions, the robustness of the wind tunnel testing for studying flow topology over complex terrain and its capability to compare to other modelling techniques especially from the level of agreement between the different data sets presented. Additionally, some flow parameters obtained from wind tunnel measurements would have been quite difficult to be measured at full-scale or by computational means considering the state of the art. This work was carried out as a part of the activities supported by the EC as part of the FP7- PEOPLE-ITN-2008 WAUDIT project (Wind Resource Assessment Audit and Standardization) within the FP7 Marie-Curie Initial Training Network and by the Spanish Ministerio de Economía y Competitividad, within the framework of the ENE2012-36473, TURCO project (Determination of the Spatial Distribution of Statistic Parameters of Flow Turbulence over Complex Topographies in Wind Tunnel) belonging to the Spanish National Program of Research (Subprograma de investigación fundamental no orientada 2012). The report is organised in seven chapters and a collection of annexes. In chapter one, the problem is introduced. In chapter two the experimental setup is described. Following, in chapter three, the inflow conditions of the main wind tunnel used in this piece of research are analysed in detail. In chapter three, preliminary pressure tests results on a model of the island are presented. The main results from the Bolund experiment are replicated in chapter five. In chapter six, an identification of specific flow strutures over the island is presented and, finally, in chapter seven, conclusions and lines for future works related to the presented one are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct numerical simulations are performed to analyze the three-dimensional instability of flows over three-dimensional cavities. The flow structures at different Reynolds numbers are investigated by using the spectral-element solver nek5000. As the Reynolds number increasing, the lateral wall effects become more important, the recirculation zone shrinks, the front vortex increases and the flow structure inside of the cavity becomes more complex. Results show that the flow bifurcates from a steady state to an oscillatory regime beyond a value of Reynolds number Re = 1100.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG  k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in (1) a parallel plate blow chamber that contained two-dimensional (2D) stents that feature completely recirculating flow, partially recirculating flow, and completely reattached flow, and (2) a three-dimensional (3D) cylindrical tube that contained stents of various geometric designs. ^ Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition was very low in the recirculation regions in the 3D stents unlike the 2D stents. Deposition distal to a strut was always high in 2D and 3D stents. Spirally recirculating regions were found in 3D unlike in 2D stents, where the deposition was higher than at well-separated regions of recirculation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of transport parameters by inverse modeling often suffers from equifinality or parameter correlation when models are fitted to observations of the solute breakthrough in column outflow experiments. This parameters uncertainty can be approached by the application of multiple experimental designs such as column experiments in open-flow mode and the recently proposed closed-flow mode. Latter are characterized by the recirculation of the column effluent into the solution supply vessel that feeds the inflow. Depending on the experimental conditions, the solute concentration in the solution supply vessel and the effluent follows a damped sinusoidal oscillation. As a result, the closed-flow experiment provides additional observables in the breakthrough curve. The evaluation of these emergent features allows intrinsic control over boundary conditions and impacts the uncertainty of parameters in inverse modeling. We present a comprehensive sensitivity analysis to illustrate the potential application of closed-flow experiments. We show that the sensitivity with respect to the apparent dispersion can be controlled by the experimenter leading to a decrease in parameter uncertainty as compared to classical experiments by an order of magnitude for optimal settings. With these finding we are also able to reduce the equifinality found for situations, where rate-limited interactions impede a proper determination of the apparent dispersion and rate coefficients. Furthermore, we show the expected breakthrough curve for equilibrium and kinetic sorption, the latter showing strong similarities to the behavior found for completely mixed batch reactor experiments. This renders the closed-flow mode a useful complementary approach to classical column experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of fish cultured using recycling units may differ from that of fish from outdoor farming units due to a range of deviating environmental determinants. This applies not only to flesh quality but also to morphological (processing) traits. This study evaluates processing yields of sibling fish cultured in two different farming units: (i) an outdoor pond aquaculture system with a flow-through regime (24.6 ± 0.2°C), and (ii) indoor tanks using a recirculation aquaculture system (RAS; 26.0 ± 1.0°C). Clear differences were observed in the most important processing traits, i.e. skinned trunk and fillet yields, which were both significantly higher (P < 0.01) in RAS fish due to significantly smaller (P < 0.05) head weight in fish of the flow-through system. Skin represented a significantly higher (P < 0.01) proportion of total weight in both RAS males and females. The most obvious difference was in the deposited fat weight, which was significantly higher (P < 0.01) in RAS fish. Visceral fat deposits were significantly higher (P < 0.01) in females and ventral and dorsal fat deposits higher (P > 0.05) in males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this present study was to investigate on the effects of concurrent training with blood flow restriction (BFR-CT) and concurrent training (CT) on the aerobic fitness, muscle mass and muscle strength in a cohort of older individuals. 25 healthy older adults (64.7±4.1 years; 69.33±10.8 kg; 1.6±0.1 m) were randomly assigned to experimental groups: CT (n=8, endurance training (ET), 2 days/week for 30-40 min, 50-80% VO2peak and RT, 2 days/week, leg press with 4 sets of 10 reps at 70-80% of 1-RM with 60 s rest), BFR-CT (n=10, ET, similar to CT, but resistance training with blood flow restriction: 2 days/week, leg press with 1 set of 30 and 3 sets of 15 reps at 20-30% 1-RM with 60 s rest) or control group (n=7). Quadriceps cross-sectional area (CSAq), 1-RM and VO2peak were assessed pre- and post-examination (12 wk). The CT and BFR-CT showed similar increases in CSAq post-test (7.3%, P<0.001; 7.6%, P<0.0001, respectively), 1-RM (38.1%, P<0.001; 35.4%, P=0.001, respectively) and VO2peak (9.5%, P=0.04; 10.3%, P=0.02, respectively). The BFR-CT promotes similar neuromuscular and cardiorespiratory adaptations as CT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FUNDAMENTOS: O tratamento da hanseníase é definido pela classificação de pacientes em paucibacilares (PB) e multibacilares (MB). A OMS (Organização Mundial de Saúde) classifica os doentes de acordo com o número de lesões, mas Ridley-Jopling (R&J) utiliza também exames complementares, porém é de difícil utilização fora dos serviços de referência. Em 2003 foi desenvolvido um teste denominado ML-Flow, uma alternativa à sorologia por ELISA para auxiliar na classificação de pacientes em PB e MB e auxiliar na decisão terapêutica. OBJETIVOS: Observar a concordância entre o teste de ML-Flow e baciloscopia de linfa, exame já consagrado para detecção de MB. Analisar a utilidade do teste de ML-Flow em campo. MATERIAL E MÉTODOS: Estudo retrospectivo avaliando prontuário de 55 pacientes virgens de tratamento, diagnosticados como PB ou MB por R&J. Submetidos à baciloscopia e ao teste de ML-Flow. RESULTADOS: Nos MB, a baciloscopia foi positiva em 80% dos casos, o ML-flow foi positivo em 82,5%. Entre os PB, o ML-Flow foi positivo em 37,5% e a baciloscopia do esfregaço foi negativa em 100% dos casos. A concordância entre os resultados da baciloscopia do esfregaço e ML-Flow foi de 87,5%, kappa=0,59, p<0,001. CONCLUSÃO: Nenhum teste laboratorial é 100% sensível e específico para a correta classificação de todas as formas de hanseníase. O ML-Flow é um teste rápido, de fácil manuseio em campo, menos invasivo que a baciloscopia podendo ser útil para auxiliar na decisão terapêutica em locais de difícil acesso a serviços de referência.