940 resultados para flexible motion control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic human-machine interfaces and interaction techniques have been shown to offer advantages over conventional approaches. This work introduces the 3D virtual haptic cone with the aim of improving human remote control of a vehicle's motion. The 3D cone introduces a third dimension to the haptic control surface over existing approaches. This approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst simultaneously receiving real-time haptic information from the remote system. The presented approach offers potential across many applications, and as a case study, this work considers the approach in the context of mobile robot motion control. The performance of the approach in providing the operator with improved motion controllability is evaluated and the performance improvement determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic technology provides the ability for a system to recreate the sense of touch to a human operator, and as such offers wide reaching advantages. The ability to interact with the human's tactual modality introduces haptic human-machine interaction to replace or augment existing mediums such as visual and audible information. A distinct advantage of haptic human-machine interaction is the intrinsic bilateral nature, where information can be communicated in both directions simultaneously. This paper investigates the bilateral nature of the haptic interface in controlling the motion of a remote (or virtual) vehicle and presents the ability to provide an additional dimension of haptic information to the user over existing approaches [1-4]. The 3D virtual haptic cone offers the ability to not only provide the user with relevant haptic augmentation pertaining to the task at hand, as do existing approaches, however, to also simultaneously provide an intuitive indication of the current velocities being commanded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a 6-RRCRR parallel robot assisted minimally invasive surgery/microsurgery system (PRAMiSS) is introduced. Remote centre-of-motion (RCM) control algorithms of PRAMiSS suitable for minimally invasive surgery and microsurgery are also presented. The programmable RCM approach is implemented in order to achieve manipulation under the constraint of moving through the fixed penetration point. Having minimised the displacements of the mobile platform of the parallel micropositioning robot, the algorithms also apply orientation constraint to the instrument and prevent the tool tip to orient due to the robot movements during the manipulation. Experimental results are provided to verify accuracy and effectiveness of the proposed RCM control algorithms for minimally invasive surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.