930 resultados para fire cycle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard–Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated ≈6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500–3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO₂ remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO₂ fertilization, land use, wild fire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO₂ dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO₂ and δ¹³ CO₂ changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO₂ dynamics from 8ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO₂ changes after 122 ka BP. This failure to simulate late-Eemian CO₂ dynamics could be a result of the imposed forcings such as prescribed CaCO₃ accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO₂ dynamics eshallow water CaCO₃ accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO₂ dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most common method of achieve the required fire resistance is by the use of passive fire protection systems, being intumescent coatings the fire protection material frequently used. These are usually considered thin film coatings as they are applied with a dry film thickness (DFT) between 0.3-3 [mm]. The required DFT is obtained by experimental fire resistance tests performed to assess the contribution of this reactive fire protection material to the steel member fire resistance. This tests are done after dry coating and a short time period of atmospheric conditioning, at constant temperature and humidity. As the coatings formulation is mainly made from polymeric basis compounds, it is expected that the environmental factors, such temperature, humidity and UV radiation (UVA and UVB) significantly affect the intumescent coating fire protection performance and its durability. This work presents a research study about the effects of aging on the fire protection performance of intumescent coatings. A commercial water based coating is submitted to an accelerated aging cycle, using a QUV Accelerated Weathering Tester. This tests aim to simulate 10 years of the coating natural aging. The coating durability is tested comparing the fire protection of small steel samples submitted to a radiant heat flux exposure from a cone calorimeter. In total, 28 tests were performed on intumescent coating protected steel specimens, of which 14 specimens were tested before the hydrothermal aging test and other 14 after accelerated aging. The experimental tests results of the steel temperature evolution shows that increasing the intumescent dry coating film thickness, the fire resistance time increases. After the accelerated aging cycles, the coating lose their ability to expand, resulting in an increase of the steel temperature of approximately 200 [ºC], compared to the samples without aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomiasis is a common tropical disease caused by Schistosoma species Schistosomiasis' pathogenesis is known to vary according to the worms' strain. Moreover, high parasitical virulence is directly related to eggs release and granulomatous inflammation in the host's organs. This virulence might be influenced by different classes of molecules, such as lipids. Therefore, better understanding of the metabolic profile of these organisms is necessary, especially for an increased potential of unraveling strain virulence mechanisms and resistance to existing treatments. In this report, direct-infusion electrospray high-resolution mass spectrometry (ESI(+)-HRMS) along with the lipidomic platform were employed to rapidly characterize and differentiate two Brazilian S. mansoni strains (BH and SE) in three stages of their life cycle: eggs, miracidia and cercariae, with samples from experimental animals (Swiss/SPF mice). Furthermore, urine samples of the infected and uninfected mice were analyzed to assess the possibility of direct diagnosis. All samples were differentiated using multivariate data analysis, PCA, which helped electing markers from distinct lipid classes; phospholipids, diacylglycerols and triacylglycerols, for example, clearly presented different intensities in some stages and strains, as well as in urine samples. This indicates that biochemical characterization of S. mansoni may help narrowing-down the investigation of new therapeutic targets according to strain composition and aggressiveness of disease. Interestingly, lipid profile of infected mice urine varies when compared to control samples, indicating that direct diagnosis of schistosomiasis from urine may be feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several native herbaceous and subshrub species native to the Cerrado in Brazil are geophytes, that is, they survive the unfavorable dry season and low temperatures, that sometimes coincide with fire, with only the underground system intact. Vernonia oxylepis is one of these species and the aim of this study was to describe the morpho-anatomy of the tuberous root and bud formation on this structure. The main axis of this root is perpendicular to the soil surface, and from which aerial shoots arise periodically throughout the life cycle. On the upper portion of the root, self-grafting of the shoots occurs. The root stores lipids and fructans, exhibits contraction and produces reparatory buds; adventitious buds arise from proliferated pericycle. These characteristics may be related to adaptation of this species to conditions in the Cerrado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire management is a common practice in several reserves in the Cerrado, but its influences on bird reproduction remain unknown. In addition, the nesting biology of the Burrowing Owl (Athene cunicularia) has been studied in numerous environments, but not in tropical grasslands managed by fire. This study examined the effects of fire management on the nesting biology of A. cunicularia in Emas National Park, State of Goias, central Brazilian Cerrado. We compared the number of breeding pairs and their burrows in October and November 2009 at 15 study sites in grasslands managed by fire (firebreaks) and unmanaged grasslands adjacent to and distant from firebreaks. We visited active burrows two-four times and described the burrow entrances and sentinel sites and counted and observed adults and young. A total of 19 burrows were found at firebreaks. One and two burrows were found in grasslands adjacent to and distant from firebreaks, respectively. For all burrows found, one to three young reached the adult size, being able to fly and/or run in early November. The 22 burrows found were in the ground, associated or not with termite and ant nests. Most (86.4%) burrows had only one entrance. Only three burrows had two or three entrances. Structures used as sentinel perches by adults were mounds in front of the burrow entrances, termite nests, shrubs and trees. Most of these sentinel sites were shorter than 2 m high and located less than 10 m from the burrow entrance. At Emas National Park, firebreaks appear to provide more attractive conditions to the nesting of A. cunicularia than unmanaged grasslands, likely because of the short herbaceous stratum due to frequent burning of firebreaks. This study suggests that fire management provides suitable conditions for the successful reproduction of A. cunicularia in firebreaks at Emas National Park.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the amount of glycosaminoglycans in the uterine cervix during each phase of the rat estrous cycle. DESIGN: Based on vaginal smears, forty female, regularly cycling rats were divided into four groups (n = 10 for each group): GI - proestrous, GII - estrous, GIII - metaestrous and GIV - diestrous. Animals were sacrificed at each phase of the cycle, and the cervix was immediately removed and submitted to biochemical extraction and determination of sulfated glycosaminoglycans and hyaluronic acid. The results were analyzed by ANOVA followed by the Bonferroni post-hoc test. RESULTS: The uterine cervix had the highest amount of total sulfated glycosaminoglycans and dermatan sulfate during the estrous phase (8.90 ± 0.55 mg/g of cetonic extract, p<0.001; and 8.86 ± 0.57 mg/g of cetonic extract, p<0.001). In addition, there was more heparan sulfate at the cervix during the proestrous phase (0.185 ± 0.03 mg/g of cetonic extract) than during any other phase (p<0.001). There were no significant changes in the concentration of hyaluronic acid in the uterine cervix during the estrous cycle. CONCLUSION: Our data suggest that the amount of total sulfated glycosaminoglycans may be influenced by hormonal fluctuations related to the estrous cycle, with dermatan sulfate and heparan sulfate being the glycosaminoglycans most sensitive to hormonal change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The survival, absolute population size, gonotrophic cycle duration, and temporal and spatial abundance of Nyssomyia neivai (Pinto) were studied in a rural area endemic for American cutaneous leishmaniasis (ACL) in Conchal, Sõo Paulo State, southeastern Brazil, using mark-release-recapture techniques and by monitoring population fluctuation. The monthly abundance exhibited a unimodal pattern, with forest and domicile habitats having the highest relative abundances. A total of 1,873 males and 3,557 females were marked and released during the six experiments, of which 4.1-13.0 per cent of males and 4.1-11.8 per cent of females were recaptured. Daily survivorship estimated from the decline in recaptures per day was 0.681 for males and 0.667 for females. Gonotrophic cycle duration was estimated to be 4.0 d. Absolute population size was calculated using the Lincoln Index and ranged from 861 to 4,612 males and from 2,187 to 19,739 females. The low proportion of females that reach the age when they are potentially infective suggests that N. neivai has a low biological capacity to serve as a vector and that factors such as high biting rates and opportunistic feeding behavior would be needed to enable Leishmania (Viannia) braziliensis Vianna transmission. This agreed with the epidemiological pattern of ACL in southeastern Brazil that is characterized by low incidence, with isolated cases acquired principally within domiciliary habitats

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe growth, longevity, sex ratio, reproductive period, and recruitment of Aegla paulensis from Jaragua Stale Park, Sao Paulo, Brazil (23 degrees 27'27.9 '' S; 46 degrees 45'32.3 '' W). The population was sampled monthly (September 2007 through August 2009) with the aid of traps. Over five thousand individuals were captured, sexed, measured (carapace length = CL) and inspected for reproductive traits (females only), and then released back to the sampling site. The pattern of the reproductive cycle was strongly seasonal (austral mid autumn through late winter), with a single recruitment pulse per year. The obtained von Bertalanffy growth equations were CL = 21.25[1-e(-0.041(t + 1.250))] and CL = 16.52[1-e(-0.049(t + 1.823))] for males and females, respectively. Males (mean CL +/- SD = 11.86 +/- 2.79 mm) attain larger sizes than females (mean CL +/- SD = 10.84 +/- 2.36 mm). Aegla paulensis reproduces twice during an estimated life span of 40.2 months for females and 33.9 months for males. Temporal variation of sex ratio showed a distinctive pattern characterized by a sequence of three distinct periods that repeated from one year to another, and which suggested that a behavioral component influence the proportion of sex in adult specimens sampled with traps during reproductive and non-reproductive periods.