951 resultados para finite-difference time-domain (FDTD) method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the experimental and theoretical Investigations on novel feeding techniques for bandwidth enhancement of microstrip patches. The new feeding techniques provide bandwidth enhancement without deteriorating the radiation characteristics of the antenna. The antenna is analysed using finite Difference Time Domain (FDTD) method. The predicated results are compared with the experimental results and excellent agreement is observed. The results are also verified using IE3D simulation software. The antenna is suitable for personal and broadband communications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows a theoretical analysis together with numerical and experimental results of transmission characteristics from the microstrip bandpass filters with different geometries. These filters are built over isotropic dielectric substrates. The numerical analysis is made by specifical commercial softwares, like Ansoft Designer and Agilent Advanced Design System (ADS). In addition to these tools, a Matlab Script was built to analyze the filters through the Finite-Difference Time-Domain (FDTD) method. The filters project focused the development of the first stage of filtering in the ITASAT s Transponder receptor, and its integration with the others systems. Some microstrip filters architectures have been studied, aiming the viability of implementation and suitable practical application for the purposes of the ITASAT Project due to its lowspace occupation in the lower UHF frequencies. The ITASAT project is a Universityexperimental project which will build a satellite to integrate the Brazilian Data Collect System s satellite constellation, with efforts of many Brazilian institutes, like for example AEB (Brazilian Spatial Agency), ITA (Technological Institute of Aeronautics), INPE/CRN (National Institute of Spatial Researches/Northeastern Regional Center) and UFRN (Federal University of Rio Grande do Norte). Comparisons were made between numerical and experimental results of all filters, where good agreements could be noticed, reaching the most of the objectives. Also, post-work improvements were suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the fabrication and analysis of a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Experimental optical characterization, achieved by measurements of the specular reflectance under variable angles, indicated the clear presence of a Bragg diffraction pattern. Results are further explored by theoretical calculations based on the Finite Difference Time Domain (FDTD) method to determine the full PhC band structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eddy currents induced within a magnetic resonance imaging (MRI) cryostat bore during pulsing of gradient coils can be applied constructively together with the gradient currents that generate them, to obtain good quality gradient uniformities within a specified imaging volume over time. This can be achieved by simultaneously optimizing the spatial distribution and temporal pre-emphasis of the gradient coil current, to account for the spatial and temporal variation of the secondary magnetic fields due to the induced eddy currents. This method allows the tailored design of gradient coil/magnet configurations and consequent engineering trade-offs. To compute the transient eddy currents within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using total-field scattered-field (TFSF) scheme has been performed and validated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the "fishbone", the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 μm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent "barcode" implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1, 1], are compared to theoretical calculations based on the Finite Di®erence Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent study, severe distortions in the proton images of an excised, fixed, human brain in an 11.1 Tesla/40 cm MR instrument have been observed, and the effect modeled on phantom images using a finite difference time domain (FDTD) model. in the present study, we extend these simulations to that of a complete human head, employing a hybrid FDTD and method of moments (MoM) approach, which provides a validated method for simulating biological samples in coil structures. The effect of fixative on the image distortions is explored. importantly, temperature distributions within the head are also simulated using a bioheat method based on parameters derived from the electromagnetic simulations. The MoM/FDTD simulations confirm that the transverse magnetic field (B,) from a ReCav resonator exhibits good homogeneity in air but strong inhomogeneity when loaded with the head with or without fixative. The fixative serves to increase the distortions, but they are still significant for the in vivo simulations. The simulated signal intensity (SI) distribution within the sample confirm the distortions in the experimental images are caused by the complex interactions of the incident electromagnetic fields with tissue, which is heterogeneous in terms of conductivity and permittivity. The temperature distribution is likewise heterogeneous, raising concerns regarding hot spot generation in the sample that may exceed acceptable levels in future in vivo studies. As human imaging at 11.1 T is some time away, simulations are important in terms of predicting potential safety issues as well as evaluating practical concerns about the quality of images. Simulation on a whole human head at 11.1 T implies the wave behavior presents significant engineering challenges for ultra-high-field (UHF) MRI. Novel strategies will have to be employed in imaging technique and resonator design for UHF MRI to achieve the theoretical signal-to-noise ratio (SNR) improvements it offers over lower field systems. (C) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An object-oriented finite-difference time-domain (FDTD) simulator has been developed for electromagnetic study and design applications in Magnetic Resonance Imaging. It is aimed to be a complete FDTD model of an MRI system including all high and low-frequency field generating units and electrical models of the patient. The design method is described and MRI-based numerical examples are presented to illustrate the function of the numerical solver, particular emphasis is placed on high field studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterization of an indoor Wimax radio channel using the Finite-Difference Time-Domain (FDTD) [1] method complemented with the Convolutional Perfect Matched Layer (CPML) technique [2]. An indoor 2D scenario is simulated in the 3.5GHz band (IEEE 802.16d-2004 and IEEE 802.16e-2005 [3]). In this study, we used two complementary techniques in both analysis, technique A and B for fading based on delay spread and technique C and D for fading based on Doppler spread. Both techniques converge to the same result. Simulated results define the channel as flat, slow and without inter-symbolic interference (ISI), making the application of the spatial diversity the most appropriate scheme.