988 resultados para eye development


Relevância:

70.00% 70.00%

Publicador:

Resumo:

FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The serine-threonine kinase LKB1 regulates cell polarity from Caenorhabditis elegans to man. Loss of lkb1 leads to a cancer predisposition, known as Peutz-Jeghers Syndrome. Biochemical analysis indicates that LKB1 can phosphorylate and activate a family of AMPK- like kinases, however, the precise contribution of these kinases to the establishment and maintenance of cell polarity is still unclear. Recent studies propose that LKB1 acts primarily through the AMP kinase to establish and/or maintain cell polarity. To determine whether this simple model of how LKB1 regulates cell polarity has relevance to complex tissues, we examined lkb1 mutants in the Drosophila eye. We show that adherens junctions expand and apical, junctional, and basolateral domains mix in lkb1 mutants. Surprisingly, we find LKB1 does not act primarily through AMPK to regulate cell polarity in the retina. Unlike lkb1 mutants, ampk retinas do not show elongated rhabdomeres or expansion of apical and junctional markers into the basolateral domain. In addition, nutrient deprivation does not reveal a more dramatic polarity phenotype in lkb1 photoreceptors. These data suggest that AMPK is not the primary target of LKB1 during eye development. Instead, we find that a number of other AMPK-like kinase, such as SIK, NUAK, Par-1, KP78a, and KP78b show phenotypes similar to weak lkb1 loss of function in the eye. These data suggest that in complex tissues, LKB1 acts on an array of targets to regulate cell polarity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mast cells are present in the eye of chick embryos from the 14th day onward, displaying metachromatic granules, mainly in the iris anterior surface and pectinate ligament. Ultrastructurally these cells show electron-dense granules and a few thin and short cytoplasmic projections in close contact with fibroblasts. Sometimes these contacts are extensive, with long fibroblast projections partially involving the mast cells. Gap junctions between mast cells and fibroblasts are observed only in the eyes of 16- and 20-day-old embryos. These intercellular specializations are represented by a close apposition of cytoplasmic membranes with an extension up to 300 nm. Gap junctions between mast cells and fibroblasts were not observed previously in vivo or in vitro, although in vitro studies have shown that a number of functionally critical interactions may occur between these cells. Our morphological findings suggest that, in vivo, fibroblasts interact with mast cells and may influence their maturation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Insights into the function of a gene can be gained in multiple ways, including loss-of-function phenotype, sequence similarity, expression pattern, and by the consequences of its misexpression. Analysis of the phenotypes produced by expression of a gene at an abnormal time, place, or level may provide clues to a gene’s function when other approaches are not illuminating. Here we report that an eye-specific, enhancer–promoter present in the P element expression vector pGMR is able to drive high level expression in the eye of genes near the site of P element insertion. Cell fate determination, differentiation, proliferation, and death are essential for normal eye development. Thus the ability to carry out eye-specific misexpression of a significant fraction of genes in the genome, given the dispensability of the eye for viability and fertility of the adult, should provide a powerful approach for identifying regulators of these processes. To test this idea we carried out two overexpression screens for genes that function to regulate cell death. We screened for insertion-dependent dominant phenotypes in a wild-type background, and for dominant modifiers of a reaper overexpression-induced small eye phenotype. Multiple chromosomal loci were identified, including an insertion 5′ to hid, a potent inducer of apoptosis, and insertions 5′ to DIAP1, a cell death suppressor. To facilitate the cloning of genes near the P element insertion new misexpression vectors were created. A screen with one of these vectors identified eagle as a suppressor of a rough eye phenotype associated with overexpression of an activated Ras1 gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertebrate eye development begins at the gastrula stage, when a region known as the eye field acquires the capacity to generate retina and lens. Optx2, a homeobox gene of the sine oculis-Six family, is selectively expressed in this early eye field and later in the lens placode and optic vesicle. The distal and ventral portion of the optic vesicle are fated to become the retina and optic nerve, whereas the dorsal portion eventually loses its neural characteristics and activates the synthesis of melanin, forming the retinal pigment epithelium. Optx2 expression is turned off in the future pigment epithelium but remains expressed in the proliferating neuroblasts and differentiating cells of the neural retina. When an Optx2-expressing plasmid is transfected into embryonic or mature chicken pigment epithelial cells, these cells adopt a neuronal morphology and express markers characteristic of developing neural retina and photoreceptors. One explanation of these results is that Optx2 functions as a determinant of retinal precursors and that it has induced the transdifferentiation of pigment epithelium into retinal neurons and photoreceptors. We also have isolated optix, a Drosophila gene that is the closest insect homologue of Optx2 and Six3. Optix is expressed during early development of the fly head and eye primordia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Irregular facets (If) is a dominant mutation of Drosophila that results in small eyes with fused ommatidia. Previous results showed that the gene Krüppel (Kr), which is best known for its early segmentation function, is expressed ectopically in If mutant eye discs. However, it was not known whether ectopic Kr activity is either the cause or the result of the If mutation. Here, we show that If is a gain-of-function allele of Kr. We then used the If mutation in a genetic screen to identify dominant enhancers and suppressors of Kr activity on the third chromosome. Of 30 identified Kr-interacting loci, two were cloned, and we examined whether they also represent components of a natural Kr-dependent developmental pathway of the embryo. We show that the two genes, eyelid (eld) and extramacrochaetae (emc), which encode a Bright family-type DNA binding protein and a helix-loop-helix factor, respectively, are necessary to achieve the singling-out of a unique Kr-expressing cell during the development of the Malpighian tubules, the excretory organs of the fly. The results indicate that the Kr gain-of-function mutation If provides a tool to identify genes that are active during eye development and that a number of them function also in the control of Kr-dependent developmental processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This chapter provides an overview of the various eye-related causes of photophobia and the likely mechanisms responsible. Photophobia is the experience of discomfort affecting the eyes as a result of exposure to light. It has a variety of causes, including the result of eye or brain disease, or it can be a side effect of various drugs or laser surgery. Photophobia can also be a symptom of a more serious disorder such as meningitis and therefore, requires appropriate investigation, diagnosis, and treatment. Trauma or disease affecting several structures of the eye are a common cause of photophobia and can be associated with: (1) the ocular adnexia, such as blepharitis and blepharospasm, (2) the cornea, including abrasion, ulcerative keratitis, and corneal dystrophy, (3) problems in eye development, such as aniridia, buphthalmos, coloboma, and aphakia, (4) various eye inflammations, including uveitis, and (5) retinal disorders, such as achromatopsia, retinal detachment, and retinal dystrophy. There may be two main explanations for photophobia associated with these conditions: (1) direct stimulation of the trigeminal nerve due to damage, disease, or excessive light entering the eye and (2) overstimulation of the retina including a specific population of light-sensitive ganglion cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article provides an overview of the various eye-related causes of photophobia and the likely mechanisms responsible. Photophobia is an experience of discomfort affecting the eyes due to exposure to light. It has a variety of causes including the result of eye or brain disease, or it can be a side effect of various drugs or laser surgery. Photophobia can also be a symptom of a more serious disorder such as meningitis and therefore, requires appropriate investigation, diagnosis, and treatment. Trauma or disease affecting several structures of the eye are a common cause of photophobia and can be associated with: (1) the ocular adnexia, such as blepharitis and blepharospasm, (2) the cornea, including abrasion, ulcerative keratitis, and corneal dystrophy, (3) problems in eye development, such as aniridia, buphthalmos, coloboma, and aphakia, (4) various eye inflammations, including uveitis, and (5) retinal disorders, such as achromatopsia, retinal detachment, and retinal dystrophy. There may be two main explanations for eye-related photophobia: (1) direct stimulation of the trigeminal nerve due to damage, disease, or excessive light entering the eye and (2) overstimulation of the retina including a specific population of light-sensitive ganglion cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia. In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for anophthalmia/microphthalmia. ©2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The Pbx TALE (three-amino-acid loop extension) homeodomain proteins interact with class 1 Hox proteins, which are master regulators of cell fate decisions. This study was performed to elucidate the role of the Pbx1 TALE protein in the corneal epithelium of mice. METHODS: Pbx1(f/f) mice were crossed with mice containing Cre recombinase under the control of the K14 promoter. Subsequently, the eyes of these mice were dissected and prepared for histologic or molecular analysis. RESULTS: Tissue-specific deletion of Pbx1 in the corneal epithelium of mice resulted in corneal dystrophy and clouding that was apparent in newborns and progressively worsened with age. Thickening of the cornea epithelium was accompanied by stromal infiltration with atypical basal cells, severe disorganization of stromal collagen matrix, and loss of corneal barrier function. High epithelial cell turnover was associated with perturbed expression of developmental regulators and aberrant differentiation, suggesting an important function for Pbx1 in determining corneal identity. CONCLUSIONS: These studies establish an essential role of the Pbx1 proto-oncogene in corneal morphogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HMX1 is a homeobox-containing transcription factor implicated in eye development and responsible for the oculo-auricular syndrome of Schorderet-Munier-Franceschetti. HMX1 is composed of two exons with three conserved domains in exon 2, a homeobox and two domains called SD1 and SD2. The function of the latter two domains remains unknown. During retinal development, HMX1 is expressed in a polarized manner and thus seems to play a role in the establishment of retinal polarity although its exact role and mode of action in eye development are unknown. Here, we demonstrated that HMX1 dimerized and that the SD1 and homeodomains are required for this function. In addition, we showed that proper nuclear localization requires the presence of the homeodomain. We also identified that EPHA6, a gene implicated in retinal axon guidance, is one of its targets in eye development and showed that a dimerized HMX1 is needed to inhibit EPHA6 expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé :Une famille souffrant d'un nouveau syndrome oculo-auriculaire, appelé syndrome de Schorderet-Munier, a été identifiée. Ce syndrome est caractérisé par une déformation du lobe de l'oreille et des anomalies ophtalmiques, notamment une microphtalmie, une cataracte, un colobome et une dégénérescence rétinienne. Le gène impliqué dans ce syndrome est NKX5-3 codant un facteur de transcription contenant un homéodomaine. Chez les patient atteints, le gène comporte une délétion de 26 nucléotides provoquant probablement l'apparition d'un codon stop précoce. Ce gène n'est exprimé que dans certains organes dont les testicules et les ganglions cervicaux supérieurs, ainsi que dans les organes touchés par ce syndrome, à savoir le pavillon de l'oreille et l'oeil, surtout lors du développement embryonnaire. Au niveau de la rétine, NKX5-3 est présent dans la couche nucléaire interne et dans la couche dè cellules ganglionnaires et est exprimé de manière polarisée selon un axe temporal > nasal et ventral > dorsal. Son expression in vitro est régulée par Spl, un facteur de transcription exprimé durant le développement de l'oeil chez la souris. NKX5-3 semble lui-même provoquer une inhibition de l'expression de SHH et de EPHA6. Ces gènes sont tous les deux impliqués à leur manière dans le guidage des axones des cellules ganglionnaires de la rétine. Pris ensemble, ces résultats nous permettent donc d'émettre une hypothèse quant à un rôle potentiel de NKX5-3 dans ce processus.Abstract :A family with a new oculo-auricular syndrome, called syndrome of Schorderet-Munier, was identified. This disease is characterised by a deformation of the ear lobule and by several ophthalmic abnormalities, like microphthalmia, cataract, coloboma and a retinal degeneration. The gene, which causes this syndrome, is NKX5-3 coding for a transcription factor contaning a homeodomain. In the affectd patients, the defect consists of a deletion of 26 nucleotides probably producing a premature stop codon. This gene is only expressed in a few organs like testis and superior cervical ganglions, as well as in organs affected by this syndrome, namely the ear pinna and the eye, mainly during embryonic development. In the retina, NKX5-3 is present in the inner nuclear layer and in the ganglion cells layer. It is expressed along a gradient ranging from the temporal retina to nasal retina and from the ventral to the dorsal part. Its in vitro expression is regulated by Spl, a transcription factor expressed during the murine eye development. NKX5-3 seems to inhibit the expression of SHH and EPHA6. These genes are both implicated, in their own way, in the axon guidance of the retinal ganglion cells. Taken together, these results allow us to make an assumption about a potential role of NKX5-3 in this process.