999 resultados para equivalent layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomorphic Iny2Al1-y2As/In0.73Ga0.27As/Iny1Al1-y1As (y1 greater than or equal to 0.52) modulation-doped heterostructures with an intentional nonlattice-matched buffer layer were successfully grown by molecular beam epitaxy on (100)InP substrates. Fourier transform photoluminescence and double crystal x-ray diffraction measurements show a superior crystalline quality in the high In content channel, when In mole fraction increases from y1=0.52 to 0.55 in the Iny1Al1-y1As buffer layer. In this case, an increasing of 16.3% and 23.5% for conductivity (mu xn(s)) and mobility, related to the strain compensation in the In0.73Ga0.27As channel, was achieved, respectively, comparing to the structure containing a well-lattice matched buffer layer. With increasing the mismatch further (y1=0.58), a morphology with cross-hatched pattern was observed due to the onset of a large amount of misfit dislocations, and the electronic characterization is not able to be improved continuously. Because we can realize high quality strained P-HEMTs in a relative wide range of equivalent beam flux (EBF) ratios, the stringent control over the constant EBF is not indispensable on this In-based material system. (C) 1997 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical double layer capacitor test cell containing activated carbon xerogel electrodes and ionic liquid electrolyte was tested at 15, 25 and 40 OC to examine the effect of temperature on electrolyte resistance (RS) and equivalent series resistance (ESR) measured using impedance spectroscopy and capacitance using charge/discharge cycling. A commercial 10F capacitor was used as a comparison. Viscosity, ionic self-diffusion coefficients and differential scanning calorimetry measurements were used to provide an insight into the behaviour of the 1,2-dimethyl-3-propylimdazolium electrolyte. Both RS and ESR decreased with increasing temperature for both capacitors. Increasing the temperature also increased the capacitance for both the test cell and the commercial capacitor but proportionally more for the test cell. An increase in temperature decreased the ionic liquid electrolyte viscosity and increased the self diffusion coefficients of both the anion and the cation indicating an increase in dissociation and increase in ionic mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The buried oxide (BOX) layer in silicon on insulator (SOI) was replaced by a compound buried layer (CBL) containing layers of SiO2, polycrystalline silicon (polysilicon), and SiO2. The undoped polysilicon in the CBL acted as a dielectric with a higher thermal conductivity than SiO2. CBL provides a reduced thermal resistance with the same equivalent oxide thickness as a standard SiO2 buried layer. Thermal resistance was further reduced by lateral heat flow through the polysilicon. Reduction in thermal resistance by up to 68% was observed, dependent on polysilicon thickness. CBL SOI substrates were designed and manufactured to achieve a 40% reduction in thermal resistance compared with an 1.0-μm SiO2 BOX. Power bipolar transistors with an active silicon layer thickness of 13.5 μm manufactured on CBL SOI substrates showed a 5%-17% reduction in thermal resistance compared with the standard SOI. This reduction was dependent on transistor layout geometry. Between 65% and 90% of the heat flow from these power transistors is laterally through the thick active silicon layer. Analysis confirmed that CBL SOI provided a 40% reduction in the vertical path thermal resistance. Devices employing thinner active silicon layers will achieve the greater benefit from reduction in vertical path thermal resistance offered by CBL SOI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we present the formulation and the characterization of novel adiponitrile-based electrolytes as a function of the salt structure, concentration, and temperature for supercapacitor applications using activated carbon based electrode material. To drive this study two salts were selected, namely, the tetraethylammonium tetrafluoroborate and the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. Prior to determination of their electrochemical performance, formulated electrolytes were first characterized to quantify their thermal, volumetric, and transport properties as a function of temperature and composition. Then, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate their electrochemical properties as electrolyte for supercapacitor applications in comparison with those reported for the currently used model electrolyte based on the dissolution of 1 mol·dm–3 of tetraethylammonium tetrafluoroborate in acetonitrile. Surprisingly, excellent electrochemical performances were observed by testing adiponitrile-based electrolytes, especially those containing the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room-temperature molten salt. Differences observed on electrochemical performances between the selected adiponitrile electrolytes based on high-temperature (tetraethylammonium tetrafluoroborate) and the room-temperature (1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide) molten salts are mainly driven by the salt solubility in adiponitrile, as well as by the charge and the structure of each involved species. Furthermore, in comparison with classical electrolytes, the selected adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide solution exhibits almost similar specific capacitances and lower equivalent serial resistance. These results demonstrate in fact that the adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide mixture can be used for the formulation of safer electrolytes presenting a very low vapor pressure even at high temperatures to design acetonitrile-free supercapacitor devices with comparable performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solvent-vapour thermoplastic bonding process is reported which provides high strength bonding of PMMA over a large area for multi-channel and multi-layer microfluidic devices with shallow high resolution channel features. The bond process utilises a low temperature vacuum thermal fusion step with prior exposure of the substrate to chloroform (CHCl3) vapour to reduce bond temperature to below the PMMA glass transition temperature. Peak tensile and shear bond strengths greater than 3 MPa were achieved for a typical channel depth reduction of 25 µm. The device-equivalent bond performance was evaluated for multiple layers and high resolution channel features using double-side and single-side exposure of the bonding pieces. A single-sided exposure process was achieved which is suited to multi-layer bonding with channel alignment at the expense of greater depth loss and a reduction in peak bond strength. However, leak and burst tests demonstrate bond integrity up to at least 10 bar channel pressure over the full substrate area of 100 mm x 100 mm. The inclusion of metal tracks within the bond resulted in no loss of performance. The vertical wall integrity between channels was found to be compromised by solvent permeation for wall thicknesses of 100 µm which has implications for high resolution serpentine structures. Bond strength is reduced considerably for multi-layer patterned substrates where features on each layer are not aligned, despite the presence of an intermediate blank substrate. Overall a high performance bond process has been developed that has the potential to meet the stringent specifications for lab-on-chip deployment in harsh environmental conditions for applications such as deep ocean profiling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present work deals with the Preparation and characterization of high-k aluminum oxide thin films by atomic layer deposition for gate dielectric applications.The ever-increasing demand for functionality and speed for semiconductor applications requires enhanced performance, which is achieved by the continuous miniaturization of CMOS dimensions. Because of this miniaturization, several parameters, such as the dielectric thickness, come within reach of their physical limit. As the required oxide thickness approaches the sub- l nm range, SiO 2 become unsuitable as a gate dielectric because its limited physical thickness results in excessive leakage current through the gate stack, affecting the long-term reliability of the device. This leakage issue is solved in the 45 mn technology node by the integration of high-k based gate dielectrics, as their higher k-value allows a physically thicker layer while targeting the same capacitance and Equivalent Oxide Thickness (EOT). Moreover, Intel announced that Atomic Layer Deposition (ALD) would be applied to grow these materials on the Si substrate. ALD is based on the sequential use of self-limiting surface reactions of a metallic and oxidizing precursor. This self-limiting feature allows control of material growth and properties at the atomic level, which makes ALD well-suited for the deposition of highly uniform and conformal layers in CMOS devices, even if these have challenging 3D topologies with high aspect-ratios. ALD has currently acquired the status of state-of-the-art and most preferred deposition technique, for producing nano layers of various materials of technological importance. This technique can be adapted to different situations where precision in thickness and perfection in structures are required, especially in the microelectronic scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scalar-flux budgets have been obtained from large-eddy simulations (LESs) of the cumulus-capped boundary layer. Parametrizations of the terms in the budgets are discussed, and two parametrizations for the transport term in the cloud layer are proposed. It is shown that these lead to two models for scalar transports by shallow cumulus convection. One is equivalent to the subsidence detrainment form of convective tendencies obtained from mass-flux parametrizations of cumulus convection. The second is a flux-gradient relationship that is similar in form to the non-local parametrizations of turbulent transports in the dry-convective boundary layer. Using the fluxes of liquid-water potential temperature and total water content from the LES, it is shown that both models are reasonable diagnostic relations between fluxes and the vertical gradients of the mean fields. The LESs used in this study are for steady-state convection and it is possible to treat the fluxes of conserved thermodynamic variables as independent, and ignore the effects of condensation. It is argued that a parametrization of cumulus transports in a model of the cumulus-capped boundary layer should also include an explicit representation of condensation. A simple parametrization of the liquid-water flux in terms of conserved variables is also derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the initial research carried out into a new neural network called the multilayer radial basis function network (MRBF). The network extends the radial basis function (RBF) in a similar way to that in which the multilayer perceptron extends the perceptron. It is hoped that by connecting RBFs together in a layered fashion, an equivalent increase in ability can be gained, as is gained from using MLPs instead of single perceptrons. The results of a practical comparison between individual RBFs and MRBF's are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea fluxes enhances the dissipation of surface temperature fields. Depending on the time scale of damping relative to that of the eddying motions, surface eddy diffusivities can be significantly enhanced over interior values. The issues are explored and quantified in a controlled setting by driving a tracer field, a proxy for sea surface temperature, with surface altimetric observations in the Antarctic Circumpolar Current (ACC) of the Southern Ocean. A new, tracer-based diagnostic of eddy diffusivity is introduced, which is related to the Nakamura effective diffusivity. Using this, the mixed layer lateral eddy diffusivities associated with (i) eddy stirring and small-scale mixing and (ii) surface damping by air–sea interaction is quantified. In the ACC, a diffusivity associated with surface damping of a comparable magnitude to that associated with eddy stirring (;500 m2 s21) is found. In frontal regions prevalent in the ACC, an augmentation of surface lateral eddy diffusivities of this magnitude is equivalent to an air–sea flux of 100 W m22 acting over a mixed layer depth of 100 m, a very significant effect. Finally, the implications for other tracer fields such as salinity, dissolved gases, and chlorophyll are discussed. Different tracers are found to have surface eddy diffusivities that differ significantly in magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to validate the Geant4 toolkit for dosimetry applications, simulations were performed to calculate conversion coefficients h(10, alpha) from air kerma free-in-air to personal dose equivalent Hp(10, a). The simulations consisted of two parts: the production of X-rays with radiation qualities of narrow and wide spectra, and the interaction of radiation with ICRU tissue-equivalent and ISO water slab phantoms. The half-value layers of the X-ray spectra obtained by simulation were compared with experimental results. Mean energy, spectral resolution, half-value layers and conversion coefficients were compared with ISO reference values. The good agreement between results from simulation and reference data shows that the Geant4 is suitable for dosimetry applications which involve photons with energies in the range of ten to a few hundreds of keV. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of the analysis of dynamic behavior of flashover phenomenon on the high voltage-polluted insulators are presented. These results were taken from a mathematical and an experimental model that introduce the variable thickness influence of the layer pollution deposited on the high-voltage insulator surface. Analysis of the flashover was done by way of introducing a variation in the thickness of the channel of Obenaus' model, simulating a layer pollution of variable thickness. The objective was to obtain a better reproduction of the real layer pollution deposited on the insulator that works in the polluted regions. Two types of thickness variations were used: a sudden variation, using a step; and a soft variation, using a ramp; that were put along the way of the discharge. Comparison between the mathematical and experimental models showed that introduction of a ramp makes Obenaus' model more efficient in analyzing behavior of flashover phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When there is a failure on the external sheath of a flexible pipe, a high value of hydrostatic pressure is transferred to its internal plastic layer and consequently to its interlocked carcass, leading to the possibility of collapse. The design of a flexible pipe must predict the maximum value of external pressure the carcass layer can be subjected to without collapse. This value depends on the initial ovalization due to manufacturing tolerances. To study that problem, two numerical finite element models were developed to simulate the behavior of the carcass subjected to external pressure, including the plastic behavior of the materials. The first one is a full 3D model and the second one is a 3D ring model, both composed by solid elements. An interesting conclusion is that both the models provide the same results. An analytical model using an equivalent thickness approach for the carcass layer was also constructed. A good correlation between analytical and numerical models was achieved for pre-collapse behavior but the collapse pressure value and post-collapse behavior were not well predicted by the analytical model. [DOI: 10.1115/1.4005185]