899 resultados para endurance exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrastructure of capillaries in skeletal muscle was morphometrically assessed in vastus lateralis muscle (VL) biopsies taken before and after exercise from 22 participants of two training studies. In study 1 (8 wk of ergometer training), light microscopy revealed capillary-fiber (C/F) ratio (+27%) and capillary density (+16%) to be higher (P ≤ 0.05) in postexercise biopsies than in preexercise biopsies from all 10 participants. In study 2 (6 mo of moderate running), C/F ratio and capillary density were increased (+23% and +20%; respectively, P ≤ 0.05) in VL biopsies from 6 angiogenesis responders (AR) after training, whereas 6 nonangiogenesis responders (NR) showed nonsignificant changes in these structural indicators (-4%/-4%, respectively). Forty capillary profiles per participant were evaluated by point and intersection counting on cross sections after transmission electron microscopy. In study 1, volume density (Vv) and mean arithmetic thickness (T) of endothelial cells (ECs; +19%/+17%, respectively) and pericytes (PCs; +20%/+21%, respectively) were higher (P ≤ 0.05), whereas Vv and T of the pericapillary basement membrane (BM) were -23%/-22% lower (P ≤ 0.05), respectively, in posttraining biopsies. In study 2, exercise-related differences between AR and NR-groups were found for Vv and T of PCs (AR, +26%/+22%, respectively, both P ≤ 0.05; NR, +1%/-3%, respectively, both P > 0.05) and BM (AR, -14%/-13%, respectively, both P ≤ 0.05; NR, -9%/-11%, respectively, P = 0.07/0.10). Vv and T of ECs were higher (AR, +16%/+18%, respectively; NR, +6%/+6%, respectively; all P ≤ 0.05) in both groups. The PC coverage was higher (+13%, P ≤ 0.05) in VL biopsies of individuals in the AR group but nonsignificantly altered (+3%, P > 0.05) in those of the NR group after training. Our study suggests that intensified PC mobilization and BM thinning are related to exercise-induced angiogenesis in human skeletal muscle, whereas training per se induces EC-thickening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the acute effects of endurance exercise on jumping and kicking performance in young soccer players. Twenty-one top-class young soccer players (16.1±0.2 years) performed a countermovement jump test and a maximal instep soccer kick test before and after running for 20 min on a treadmill at 80% of their individual maximum heart rate. Two force platforms were used to obtain the following parameters during the countermovement jump: jump height, maximum power, maximum power relative to body mass, maximum vertical ground reaction force, maximum vertical ground reaction force relative to body mass, and maximum vertical ground reaction force applied to each leg. Maximum vertical ground reaction force and maximum vertical ground reaction force relative to body mass applied to the support leg during the kicks were also calculated with a force platform. The kicking motion was recorded using a three-dimensional motion-capture system. Maximum velocity of the ball, maximum linear velocity of the toe, ankle, knee and hip, and linear velocity of the toe at ball contact during the kicks were calculated. Non-significant differences were found in the parameters measured during the countermovement jump and the maximal instep soccer kick test before and after running, suggesting that the jumping and kicking performances of top-class young soccer players were not significantly affected after 20 min treadmill running at 80% of their individual maximum heart rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 ( n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 +/- 0.32 to 7.90 +/- 0.17 mm), systolic volume (49 +/- 7 to 83 +/- 11 mul) and cardiac output (75 +/- 3 to 107 +/- 8 ml/min) but not left wall thickness in diastole (1.74 +/- 0.07 to 1.80 +/- 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 +/- 1.1 to 19.1 +/- 0.3) and reduced purine efflux during pacing-induced workload increases. P-31-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective-Although physical activity is beneficial to health, people who exercise at high intensities throughout their lifetime may have increased cardiovascular risk. Aerobic exercise increases oxidative stress and may contribute to atherogenesis by augmented oxidation of plasma lipoproteins. The aim of this study was to examine the relationship between aerobic power and markers of oxidative stress, including the susceptibility of plasma to oxidation. Methods and results-Aerobic power was measured in 24 healthy men aged 29 9 years (mean +/- SD). Plasma was analysed from subjects of high aerobic power (HAP; VO(2)max, 64.6 +/- 6.1 ml/kg/min) and lower aerobic power (LAP;VO(2)max, 45.1 +/- 6.3 ml/kg/min) for total antioxidant capacity (TAC), malondialdehyde (MDA) and susceptibility to oxidation. Three measures were used to quantify plasma oxidizability: (1) lag time to conjugated diene formation (lag time); (2) change in absorbance at 234 nm and; (3) slope of the oxidation curve during propagation (slope). The HAP subjects had significantly lowerTAC (1.38 +/- 0.04 versus 1.42 +/- 0.06 TEAC units; P < 0.05), significantly higher change in absorbance (1.55 +/- 0.21 versus 1.36 +/- 0.17 arbitrary units; P < 0.05), but no difference in MDA (P = 0.6), compared to LAP subjects. There was a significant inverse association between TAC and slope (r = -0.49; P < 0.05). Lipoprotein profiles and daily intake of nutrients did not differ between the groups. Conclusions-These findings suggest that people with high aerobic power, due to extreme endurance exercise, have plasma with decreased antioxidant capacity and higher susceptibility to oxidation, which may increase their cardiovascular risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least 30 minutes of moderate-intensity physical activity accumulated on most, preferably all days is considered the minimum level necessary to reduce the risk of developing cardiovascular disease. Despite an unclear explanation, some epidemiological data paradoxically suggest that a very high volume of exercise is associated with a decrease in cardiovascular health. Although ultra-endurance exercise training has been shown to increase antioxidant defences (and therefore confer a protective effect against oxidative stress), an increase in oxidative stress may contribute to the development of atherosclerosis via oxidative modification of low-density lipoprotein (LDL). Research has also shown that ultra-endurance exercise is associated with acute cardiac dysfunction and injury, and these may also be related to an increase in free radical production. Longitudinal studies are needed to assess whether antioxidant defences are adequate to prevent LDL oxidation that may occur as a result of increased free radical production during very high volumes of exercise. In addition, this work will assist in understanding the accrued effect of repeated ultra-endurance exercise-induced myocardial damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No abstract

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Peroxiredoxin-2 (PRDX-2) is an antioxidant and chaperone-like protein critical for cell function. This study examined whether the levels of lymphocyte PRDX-2 are altered over one month following ultra-endurance exercise. Methods: Nine middle-aged men undertook a single-stage, multi-day 233 km (145 mile) ultra-endurance running race. Blood was collected immediately before (PRE), upon completion/retirement (POST), and following the race at DAY 1, DAY 7 and DAY 28. Lymphocyte lysates were examined for PRDX-2 by reducing SDS-PAGE and western blotting. In a sub-group of men who completed the race (n = 4) PRDX-2 oligomeric state (indicative of redox status) was investigated. Results: Ultra-endurance exercise caused significant changes in lymphocyte PRDX-2 (F (4,32) 3.409, p=0.020, ?(2) =0.299): seven-days after the race, PRDX-2 levels in lymphocytes had fallen to 30% of pre-race values (p=0.013) and returned to near-normal levels at DAY 28. Non-reducing gels demonstrated that dimeric PRDX-2 (intracellular reduced PRDX-2 monomers) was increased in 3 of 4 race completers immediately post-race, indicative of an "antioxidant response". Moreover, monomeric PRDX-2 was also increased immediately post-race in 2 of 4 race-completing subjects, indicative of oxidative damage, which was not detectable by DAY 7. Conclusions: Lymphocyte PRDX-2 was decreased below normal levels 7 days after ultra-endurance exercise. Excessive accumulation of reactive oxygen species induced by ultra-endurance exercise may underlie depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation. Low levels of lymphocyte PRDX-2 could influence cell function and might, in part, explain reports of dysregulated immunity following ultra-endurance exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-endurance races are extreme exercise events that can take place over large parts of a day, several consecutive days or over weeks and months interspersed by periods of rest and recovery. Since the first ultraendurance races in the late 1970s, around 1000 races are now held worldwide each year, and more than 100000 people take part. Although these athletes appear to be fit and healthy, there have been occasional reports of severe complications following ultra-endurance exercise. Thus there is concern that repeated extreme exercise events could have deleterious effects on health, which might be brought about by the high levels of ROS (reactive oxygen species) produced during exercise. Studies that have examined biomarkers of oxidative damage following ultra-endurance exercise have found measurements to be elevated for several days, which has usually been interpreted to reflect increased ROS production. Levels of the antioxidant molecule GSH (reduced glutathione) are depleted for 1 month or longer following ultra-endurance exercise, suggesting an impaired capacity to copewith ROS. The present paper summarizes studies that have examined the oxidative footprint of ultra-endurance exercise in light of current thinking in redox biology and the possible health implications of such extreme exercise. © The Authors Journal compilation © 2014 Biochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxiredoxin-2 (PRDX-2) belongs to a family of thiol containing proteins and is important for antioxidant defense, redox signaling and cell function. This study examined whether lymphocyte PRDX-2 levels are altered over one month following ultra-endurance exercise. Nine middle-aged men participated in a 145 mile ultra-endurance running race event. Blood drawing was undertaken immediately before, upon completion/retirement, and at one, seven and twenty eight-days following the race. PRDX-2 levels were examined at each time-point, for all participants (n=9) by reducing SDS-PAGE and western blotting. Further analysis using non-reducing SDS-PAGE and western blotting was undertaken in a sub-group of men who completed the race (n = 4) to investigate PRDX-2 oligomeric state (indicative of oxidation state). Ultra-endurance exercise caused a significant alteration in lymphocyte PRDX-2 levels (F(4,32) 3.409, p=0.020, η2 =0.299): seven-days after the race PRDX-2 levels fell by 70% (p=0.013) and at twenty eight-days after the race returned to near-normal levels. PRDX-2 dimers (intracellular reduced PRDX-2 monomers) in three of the four participants, who finished the race, were increased upon race completion. Furthermore, PRDX-2 monomers (intracellular over-oxidized PRDX-2 monomers) in two of these four participants were present upon race completion, but absent seven-days after the race. This study found that PRDX-2 levels in lymphocytes were reduced below normal levels seven-days after an ultra-endurance running race. We suggest that excessive reactive oxygen species production, induced by ultra-endurance exercise may, in part, explain the depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation.