980 resultados para efeito Doppler
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Obesity is the most common nutritional problem in dogs and it can cause various harmful effects on animal health. However, the effect of this condition on systolic blood pressure (SBP) in obese dogs is controversial. The indirect method of measuring PAS is the most commonly used in veterinary medicine for the diagnosis of systemic hypertension, because it is more practical and easy to access. There is little scientific information about the comparison of the two non- invasive methods of measurement of blood pressure in obese dogs. Therefore, the objective of this study was to evaluate the SBP in obese dogs by comparing both indirect methods of measuring blood pressure, with oscillometric and doppler vascular in order to verify the differences in blood pressure values, but also the best method to assess the SBP dogs in this body score condition. The study complain blood pressure measurement of 50 dogs, with were divided in obese dogs with mean body condition score (BCS) of 8.42 +/- 0.50 (n = 25) and dogs with ideal BCS of 4.56 +/- 0.51 (n = 25). At comparison of blood pressure values, SBP values obtained by doppler method (152 +/- 16mmHg) were higher than the oscillometric (136 +/- 11mmHg). Correspondence analysis determined by multivariate statistical analysis showed correlation between body condition and the procedure of the SBP. These findings suggest that the indirect method doppler can better reflect the SBP in obese dogs.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Área de especialização: Intervenção Cardiovascular.
Resumo:
Objective Laser Doppler imaging (LDI) was compared to wound outcomes in children's burns, to determine if the technology could be used to predict these outcomes. Methods Forty-eight patients with a total of 85 burns were included in the study. Patient median age was 4 years 10 months and scans were taken 0–186 h post-burn using the fast, low-resolution setting on the Moor LDI2 laser Doppler imager. Wounds were managed by standard practice, without taking into account the scan results. Time until complete re-epithelialisation and whether or not grafting and scar management were required were recorded for each wound. If wounds were treated with Silvazine™ or Acticoat™ prior to the scan, this was also recorded. Results The predominant colour of the scan was found to be significantly related to the re-epithelialisation, grafting and scar management outcomes and could be used to predict those outcomes. The prior use of Acticoat™ did not affect the scan relationship to outcomes, however, the use of Silvazine™ did complicate the relationship for light blue and green scanned partial thickness wounds. Scans taken within the 24-h window after-burn also appeared to be accurate predictors of wound outcome. Conclusion Laser Doppler imaging is accurate and effective in a paediatric population with a low-resolution fast-scan.
Resumo:
In presented method combination of Fourier and Time domain detection enables to broaden the effective bandwidth for time dependent Doppler Signal that allows for using higher-order Bessel functions to calculate unambiguously the vibration amplitudes.
Resumo:
Due to significant increase in vehicular accident and traffic congestions, vehicle to vehicle (V2V) communication based on the intelligent transport system (ITS) was introduced. However, to carry out efficient design and implementation of a reliable vehicular communication systems,a deep knowledge of the propagation channel characteristics in different environments is crucial, in particular the Doppler and pathloss parameters. Therefore, this paper presents an empirical V2V channel characterization and measurement performed under realistic urban, suburban and highway driving conditions in Brisbane, Australia. Based on Lin Cheng statistical Doppler Model (LCDM), values for the RMS Doppler spread and coherence time due to time selective nature of V2V channels were presented. Also, based on Log-distance power law model, values for the mean pathloss exponent and the standard deviation of shadowing were reported for urban, suburban and highway environments. The V2V channel parameters can be useful to system designers for the purpose of evaluating, simulating and developing new protocols and systems.
Resumo:
Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.