164 resultados para dynamiikan simulointi
Resumo:
Työn tavoitteena on haihduttamon asennusjärjestyksen havainnollistaminen 3D animaatiota hyväksikäyttäen, sekä sen hyödyntäminen niin myynti- kuin asennusneuvotteluissa. Kirjallinen osio perustuu tehtyyn 3D-animaatioon, joka onjaettu kolmeen pääalueeseen. Ensimmäisessä vaiheessa kerrotaan lyhyesti Andritz Oy:n liiketoiminnasta sekä selvitetään haihduttamoprosessin toimintaperiaatteet. Toinen alue käsittää toimintaprojektin, jossa tuotettu 3D-animaatio linkitetään sen käyttöympäristöön. Kolmannessa alueessa käydään läpi 3D-animaation tekoon liittyvät asiat. Lopuksi ennen yhteenvetoa käydään vielä läpi käyttäjien kommentit tehdystä animaatiosta.
Resumo:
Diplomityö on osa Savonia-amk:n koneosaston TOVI-projektia, jossa metsä-konevalmistaja Ponsse Oyj on mukana. Työssä tutkittiin Ponsse Oyj:n metsäkoneen harvesteripäätä. Tavoitteena oli harvesteripään puun syöttöliikkeessä syntyvien mekaanisten häviöiden selvittäminen. Mekaanisilla häviöillä tarkoitamme karsintaterien kitkavoimia ja syöttörullien vierintävastusta.Edellisten lisäksi tavoitteena oli tutkia puun syöttöliikkeen simuloitavuutta monikappaledynamiikkaan perustuvalla simu-lointiohjelmistolla. Työ toteutettiin mittaamalla harvesteripään hydraulisten toimilaitteiden paineita, puun syötön aikana. Mittasimme myös puun ja harvesteripään välistä liikematkaa, nopeutta, kiihtyvyyttä, sekä puun paksuutta. Mittausten lisäksi harvesteripäästä rakennettiin simulointimalli. Mitattujen paineiden avulla laskettiin vastaavien toimilaitteiden synnyttämät voimat ja momentit. Simulointimallilla toistettiin mittaustapahtumat, käyttäen mittausten avulla laskettuja voimia ja momentteja. Mallin kitkakertoimien ja vierintävastusten avulla simuloidut ja mitatut liikematkat haettiin yhteneviksi. Toisin sanoen, simulointimalli verifioitiin todellisuutta vastaavaksi, jolloin simulointimallista voitiin lukea syntyneet häviöt.
Resumo:
Työn tarkoituksena on tutkia tehonsiirron ratkaisuja, jotka mahdollistavat jatkuvanopeus ja -momentinsäädön. Työ on rajattu käsittämään kahta eri planeettavaihdetuotetta. Tutkimuksen kohteena ovat valittujen vaihdetuotteiden planeettapyörästöjen eri kytkentämahdollisuudet ja niiden vaikutus toisiinsa. Vaihteiden teknistä toteutusta ja toimivuutta tarkastellaan fyysisten testien, simuloinnin sekä analyyttisen laskennan avulla. Apuna työssä on käytetty Dymola simulointiohjelmaa, jossa kinemaattisten kuvakeliitäntöjen avulla on rakennettu virtuaalimalli tarkastellusta tuotteesta ja sen toiminnasta. Tietokoneen avulla luotua dynaamista simulointimallia on muokattu tutkimuksen edistyessä differentiaalisesti jatkuvasäätöisen momentinmuuntimen aikaan saamiseksi. Tuotteissa on käytetty aurinkopyörällisiä ja aurinkopyörättömiä planeettapyörästöjä. Ensimmäisessä tutkittavassa tuotteessa on kolme planeettapyörästöä ja toisessa kaksi. Teholähteeksi käy polttomoottori tai sähkömoottori. Välitys- ja pyörimissuhteiden muuntoon vaikuttaa planeettavaihteistoon kytketty sähkömoottori, jonka toimintaa voidaan ohjata erikseen. Työssä on selvitetty, millaisia kulmanopeuksia ja momentteja eri ajanhetkellä ja eri pisteissä simulointimallia esiintyy.Lisäksi selvitetään vaihteistojen portaattoman välityssuhteen muuntomahdollisuudet. Tarkoituksena on saada realistista informaatiota tutkittavien laitteiden toiminnasta. Johtavana ajatuksena on modernien menetelmien käyttäminen uusien innovaatioiden toimivuuden ja äärikohtien tutkimiseksi.
Resumo:
Virranmittausantureita tarvitaan monenlaisissa käyttökohteissa, joissa ne mittaavat sekä virran suuruuttaettä laatua ja toimivat osana niiden säätelyjärjestelmää. Virranmittausantureita tarvitaan myös vikatilanteiden määrittämiseen erilaisissa suojauspiireissä. Taajuusmuuttajissa virranmittaus on hyvin tärkeää ja suurista virroista sekä taajuuksista johtuen se täytyy suunnitella huolella. Tässä diplomityössä käsitellään ja tutkitaan eri virranmittausmenetelmiä, joiden avulla taajuusmuuttajan luotettava virranmittaus voidaan toteuttaa. Työssä tutkitaan eri menetelmiä virranmittauksen toteuttamiseksi, minkä jälkeen niistä valitaan sopiva menetelmä ja tutkitaan sen eri toteutusvaihtoehtoja. Sopivan toteutusvaihtoehdon valinnan jälkeen työssä suunnitellaan oma virranmittausanturi, joka sopii nimenomaisesti taajuusmuuttajakäyttöön. Suunnitellun anturin ominaisuuksia tutkitaan lopuksi simuloimalla, jonka jälkeen arvioidaan sen soveltumista käytännön sovelluksiin sekä arvioidaan erilaisia keinoja sen parantamiseksi.
Resumo:
Aktiivisten magneettilaakereiden avulla on mahdollista kannatella ferromagneettisia kappaleita, kuten sähkökoneiden roottoreita, ilman fyysistä kontaktia. Magneettilaakerit tarjoavat monia etuja, kuten esimerkiksi kitkattomuuden, verrattuina perinteisiin mekaanisiin laakereihin. Nämä edut vielä korostuvat suurnopeuskäytöissä, jotka ovat magneettilaakereiden pääasiallisia käyttökohteita. Tässä työssä esitellään magneettilaakereihin liittyvät erusteoriat ja niiden sovellustavat. Tämän jälkeen tarkastellaanmagneettilaakereiden kanssa käytettäviä säätöratkaisuja ja esitetään niille soveltuvat viritysmenetelmät. Teorioiden pohjalta rakennetaan täydellinen magneettilaakerijärjestelmän simulointimalli säätöratkaisuineen ja suoritetaan järjestelmän toimintaa kuvaavia simulointeja. Simuloinneissa saadut tulokset pyritään vielä varmentamaan suorittamalla mittauksia koelaitteistolla ja vertaamalla saatuja tuloksia keskenään.
Resumo:
Koneet voidaan usein jakaa osajärjestelmiin, joita ovat ohjaus- ja säätöjärjestelmät, voimaa tuottavat toimilaitteet ja voiman välittävät mekanismit. Eri osajärjestelmiä on simuloitu tietokoneavusteisesti jo usean vuosikymmenen ajan. Osajärjestelmien yhdistäminen on kuitenkin uudempi ilmiö. Usein esimerkiksi mekanismien mallinnuksessa toimilaitteen tuottama voimaon kuvattu vakiona, tai ajan funktiona muuttuvana voimana. Vastaavasti toimilaitteiden analysoinnissa mekanismin toimilaitteeseen välittämä kuormitus on kuvattu vakiovoimana, tai ajan funktiona työkiertoa kuvaavana kuormituksena. Kun osajärjestelmät on erotettu toisistaan, on niiden välistenvuorovaikutuksien tarkastelu erittäin epätarkkaa. Samoin osajärjestelmän vaikutuksen huomioiminen koko järjestelmän käyttäytymissä on hankalaa. Mekanismien dynamiikan mallinnukseen on kehitetty erityisesti tietokoneille soveltuvia numeerisia mallinnusmenetelmiä. Useimmat menetelmistä perustuvat Lagrangen menetelmään, joka mahdollistaa vapaasti valittaviin koordinaattimuuttujiin perustuvan mallinnuksen. Numeerista ratkaisun mahdollistamiseksi menetelmän avulla muodostettua differentiaali-algebraaliyhtälöryhmää joudutaan muokkaamaan esim. derivoimalla rajoiteyhtälöitä kahteen kertaan. Menetelmän alkuperäisessä numeerisissa ratkaisuissa kaikki mekanismia kuvaavat yleistetyt koordinaatit integroidaan jokaisella aika-askeleella. Tästä perusmenetelmästä johdetuissa menetelmissä riippumattomat yleistetyt koordinaatit joko integroidaan ja riippuvat koordinaatit ratkaistaan rajoiteyhtälöiden perusteella tai yhtälöryhmän kokoa pienennetään esim. käyttämällä nopeus- ja kiihtyvyysanalyyseissä eri kiertymäkoordinaatteja kuin asema-analyysissä. Useimmat integrointimenetelmät on alun perin tarkoitettu differentiaaliyhtälöiden (ODE) ratkaisuunjolloin yhtälöryhmään liitetyt niveliä kuvaavat algebraaliset rajoiteyhtälöt saattavat aiheuttaa ongelmia. Nivelrajoitteiden virheiden korjaus, stabilointi, on erittäin tärkeää mekanismien dynamiikan simuloinnin onnistumisen ja tulosten oikeellisuuden kannalta. Mallinnusmenetelmien johtamisessa käytetyn virtuaalisen työn periaatteen oletuksena nimittäin on, etteivät rajoitevoimat tee työtä, eli rajoitteiden vastaista siirtymää ei tapahdu. Varsinkaan monimutkaisten järjestelmien pidemmissä analyyseissä nivelrajoitteet eivät toteudu tarkasti. Tällöin järjestelmän energiatasapainoei toteudu ja järjestelmään muodostuu virtuaalista energiaa, joka rikkoo virtuaalisen työn periaatetta, Tästä syystä tulokset eivät enää pidäpaikkaansa. Tässä raportissa tarkastellaan erityyppisiä mallinnus- ja ratkaisumenetelmiä, ja vertaillaan niiden toimivuutta yksinkertaisten mekanismien numeerisessa ratkaisussa. Menetelmien toimivuutta tarkastellaan ratkaisun tehokkuuden, nivelrajoitteiden toteutumisen ja energiatasapainon säilymisen kannalta.
Resumo:
Diplomityössä tutkitaan kaupallisen simulointiohjelmiston soveltuvuutta nykyaikaisen kiinnirullaimen dynamiikan tutkimiseen. Kiinnostuksen kohteena on erityisesti kahden telan välinen nippi, sekä siinä tapahtuvat värähtelyt. Työssä mallinnetaan rullaussylinterin ja telapainolaitteen simulointimallit. Rullaussylinterin simulointimalli yhdistetään Lappeenrannan teknillisessä korkeakoulussa mallinnettuun tampuuritelan simulointimalliin, jolloin nippikontaktin tutkiminen on mahdollista. Simuloituja tuloksia verrataan todellisella laitteella tehtyihin mittauksiin sekä elementtimenetelmällä laskettuihin tuloksiin. Diplomityön mekaniikka mallinnetaan ADAMS-ohjelmistossa monikappaledynamiikan keinoin. Toimilaitteiden sekä säätöjärjestelmien kuvaukseen käytetään MATLAB Simulink-ohjelmistoa. Telojen joustavuuden mallinnuksessa käytetään hyväksi keskittyneiden massojen periaatetta. Järjestelmän hydraulipiirit mallinnetaan keskittyneiden paineiden teorian mukaisesti ja toimilaitteiden mallinnuksessa käytetään puoliempiiristä mallinnustekniikkaa. Työssä havaitaan monikappaledynamiikan soveltuvan kiinnirullaimen dynamiikan tutkimiseen. Kahden diplomityön tuloksena laaditun nippimallin avulla voidaan kuvata rullaustapahtumassa vaikuttavat voimat oikein. Värähtelymittausten perusteella voidaan tehdä karkeita johtopäätöksiä, mallin toimivuuden arvioimiseksi värähtelyjen kuvaamisessa, joskin mallin havaitaan vaativan lisätutkimusta ja kehitystyötä.
Resumo:
Meesauuni on sulfaattiselluloosan valmistuksen kemikaalikierron apukemikaalin, kalkin valmistukseen käytettävä laite. Rakenteeltaan meesauuni koostuu pyöreästä lievästi horisontaalitasosta kaltevaan asentoon tuetusta putkesta sekä putkea tukevista kannatuselimistä. Meesauunia pyöritetään käytön aikana pituusakselinsa ympäri. Työn tarkoituksena oli rakentaa ADAMS-simulointiohjelmistoon käyttöliittymä meesauunin simulointimallin luomiseen uunin päämittojen avulla. Työssä selvitetään simulointimallin soveltuvuutta uunin kannatuselimiin kohdistuvien voimien tutkimiseen uunin normaaliajossa ja tietyissä ongelmatilanteissa. Työssä suoritettujen simulointien todettiin vastaavan melko hyvin todellista meesauunia ja tukevan ajatusta ADAMS:in käyttämisestä meesauunin mekaniikan simulointiin. Samalla todettiin kuitenkin lisämittausten kehittämisen tarpeellisuus ennen pidemmälle meneviä johtopäätöksiä.
Resumo:
Työssä tutkitaan soodakattilan vesi-höyrykierron laskentaa APROS-simulointiohjelman avulla sekä mahdollisuutta rakentaa soodakattilalle oma mallikirjasto. Lisäksi tarkasteltiin mahdollisuuksia räätälöidä APROS:ista yrityksen omaa tarvetta vastaava simulointiohjelma. Kirjallisuusosuudessa esitellään soodakattilan rakenne pääpiirteittäin sekä APROS-simulointiohjelman ja Nowa-kiertolaskuohjelman laskentaperusteet. Tässä osuudessa kerrotaan myös yleisesti ohjelmien sisällöstä, rakenteesta sekä niiden käytöstä. Työn kokeellisessa osassa on kerrottu soodakattilan vesi-höyrykierron mallinnuksesta APROS:in avulla sekä mallikirjaston luomisen perusteet. Lisäksi tässä osuudessa kerrotaan alimallien tekemisestä ja niiden tarpeellisuudesta sekä simuloinnin ongelmakohdista. Työstä saatujen tulosten perusteella dynaamisen simuloinnin ja mallikirjaston avulla saadaan kiertolaskuja laskettua helposti ja luotettavasti. Alimallikirjastoa ylläpitämällä nopeutetaan kiertolaskuvariaatioden tekoa huomattavasti.
Resumo:
Työn tavoitteena oli kasvattaa sahan dimensiolaitoksella käytettävän trimmerin rakenteellista kapasiteettia. Tavoitteeseen pyrittiin modernisoimalla trimmerin teräyksikköä käyttävää toimilaite ja teräyksikön säätö dynamiikan mallinnuksen avulla. Trimmerin teräyksikön dynamiikka mallinnettiin MATLAB-matematiikkaohjelmistolla kaksiulotteisena kinematiikkamallina ja kolmeulotteisena kinetiikkamallina. Dynamiikkamallien tulosten perusteella valittin teräyksikköä käyttävä toimilaite komponentteineen. Kinetiikkamalliin mallinnettiin trimmeriä käyttävä hydraulipiiri valittuine komponentteineen keskittyneiden paineiden ja puoliempiirisen mallinnuksen periaatteita käyttäen. Teräyksikön työkiertoa säätämään mallinnettiin suljettu takaisinkytketty säätöpiiri. Tuloksien perusteella valittiin optimaalinen toimilaitteen asemointigeometria ja todettiin mallinnetun järjestelmän täyttävän asetetut vaatimukset. Järjestelmää testattiin muuttamalla jarjestelman parametreja ja tutkimalla muutosten vaikutuksia jarjestelman toimintaan. Lisaksi tutkittiin lyhyesti terayksikon rakenteen keventamisen vaikutuksia.
Resumo:
Työn tavoitteena oli tutkia kuljetusketjun automatisoinnin kehittämistä tapahtumapohjaisen simuloinnin avulla. Työn teoria osassa käsitellään yleisellä tasolla simuloinnin teoriaa, siihen liittyviä käsitteitä ja erityisesti simulointiprojektin läpiviennin vaiheita. Tässä osassa saadaan vastaukset seuraaviin kysymyksiin: - Mitä tapahtumapohjaisella simuloinnilla tarkoitetaan? - Mitkä ovat simuloinnin hyödyt ja rajoitteet? - Mitä käyttökohteita simuloinnilla on? - Minkälaisia ohjelmia simulointiin käytetään? - Mitä vaiheita simulointiprojekti sisältää? Soveltavassa osassa tutkitaan kuinka tapahtumapohjaista simulointia hyödynnettiin Veto-Ketju -projektissa ja millaisia tuloksia rakennetulla simulointimallilla saavutettiin. Veto-Ketju -projekti käsittelee kuljetusketjun sekä varasto- ja satamakäsittelyn tehostamista automatisoinnin avulla. Projektin vetäjänä ja automaattisen tavarankäsittelyjärjestelmän toimittajana on Pesmel Oy ja satamatoimintojen ja logistiikan asiantuntijana SysOpen-konserniin kuuluva suunnittelu- ja konsulttitoimisto EP-Logistics Oy. Paperiteollisuudesta mukana ovat UPM-Kymmene ja M-real, satamaoperaattorina toimii Rauma Stevedoring ja kuljetusoperaattorina VR Cargo. Veto-Ketju –projektin simulointitutkimuksessa varmistettiin suunnitellun automaattisen junavaunujen purkausjärjestelmän toiminta ennen sen käyttöönottoa ja tutkittiin erilaisten toimintatapojen vaikutuksia satamatoimintoihin, satamassa tarvittavien resurssien määrään ja määritettiin tarvittavien varastojen koko. Simulointimallin avulla pystyttiin osoittamaan selkeästi erilaisten toimintavaihtoehtojen erot. Tällä tavoin saatiin tuotetuksi lisää tietoa päätöksenteon tueksi muun muassa järjestelmän sijoituspaikan ja mahdollisen uuden varaston rakentamisen suhteen.
Resumo:
Työn tavoitteena oli selvittää mahdollisuuksia käyttää Linux-ympäristöä mekatronisten koneiden reaaliaikaisessa simuloinnissa. Työssä tutkittiin C-kielellä tehdyn reaaliaikaisen simulointimallin ratkaisua Linux-käyttöjärjestelmässä RTLinux-reaaliaikalaajennuksen avulla. Reaaliaikainen simulointi onnistui RTLinuxin avulla tehokkaasti ja mallinnusmenetelmien rajoissa tarkasti. I/O-toimintojen lisäämistä erillisten I/O-korttien avulla ei tarkasteltu tässä työssä. Reaaliaikaista Linuxia ei ole aikaisemmin käytetty mekatronisten koneiden simulointiin. Tämän vuoksi valmiita työkaluja ei ole olemassa. Linux-ympäristö ei näin ollen sovellu kovin hyvin yleiseen koneensuunnitteluun mallintamisen työläyden vuoksi.
Resumo:
Työn tavoitteena oli mallintaa satamanosturin dynamiikkaa mahdollisimman tarkasti kuvaava yksinkertaistettu malli Simulink-ohjelmalla, jonka jälkeen malli käännettiin edelleen reaaliaikasimulaattorille soveltuvaan muotoon. Nosturin malli yksinkertaistettiin käsittämään kolme osaa: Nosturin rungon, nostovaunun ja kontin. Voimista mallinnettiin pyörien kontaktivoimat, köysivoimat sekä siirtovoima. Reaaliaikasimulaattorina käytettiin Opal-RT:n RT-LAB reaaliaikasimulointiohjelmistoa, sekä tavallisia PC-tietokoneita. Simulointiin liitettiin myös 3D-animaatio, jolla nosturin liikkeet saatiin visualisoitua. Animoitava grafiikka luotiin WorldUp-ohjelmistolla ja liitettiin RT-LAB-simulaatioon RT3D-rajapinnan ja WorldUp Player:n avulla. Työn tuloksena saatiin satamanosturin dynaamista käyttäytymistä kuvaava Simulink-malli, jota on mahdollista käyttää reaaliaikaisessa simuloinnissa. Mallia testattiin RT-LAB reaaliaikasimulaattorissa, ja simuloinnista saatuja tuloksia verrattiin Adams:lla simuloituihin tuloksiin. Saatujen tulosten perusteella mallia voidaan pitää onnistuneena. Myös RT-LAB reaaliaikasimulaattori visualisointeineen vaikuttaa toimivalta kokonaisuudelta.
Resumo:
Tässä diplomityössä määritellään varmistusjärjestelmän simulointimalli eli varmistusmalli. Varmistusjärjestelmän toiminta optimoidaan kyseisen varmistusmallin avulla. Optimoinnin tavoitteena on parantaa varmistusjärjestelmän tehokkuutta. Parannusta etsitään olemassa olevien varmistusjärjestelmän resurssien maksimaalisella hyödyntämisellä. Varmistusmalli optimoidaan evoluutioalgoritmin avulla. Optimoinnissa on useita tavoitteita, jotka ovat ristiriidassa keskenään. Monitavoiteoptimointiongelma muunnetaan yhden tavoitteen optimointiongelmaksi muodostamalla tavoitefunktio painotetun summan menetelmän avulla. Rinnakkain edellisen menetelmän kanssa käytetään myös Pareto-optimointia. Pareto-optimaalisen rintaman pisteiden etsintä ohjataan lähelle painotetun summan menetelmän optimipistettä. Evoluutioalgoritmin toteutuksessa käytetään hyväksi varmistusjärjestelmiin liittyvää ongelmakohtaista tietoa. Työn tuloksena saadaan varmistusjärjestelmän simulointi- sekä optimointityökalu. Simulointityökalua käytetään kartoittamaan nykyisen varmistusjärjestelmän toimivuutta. Optimoinnin avulla tehostetaan varmistusjärjestelmän toimintaa. Työkalua voidaan käyttää myös uusien varmistusjärjestelmien suunnittelussa sekä nykyisten varmistusjärjestelmien laajentamisessa.
Resumo:
Työn tavoitteena oli tutkia sellumassan suotautumiseen liittyviä tekijöitä Ahlstrom Machineryn Drum Displacer™ -puumassapesurissa (DD-pesuri). Teoriaosassa tarkasteltiin aluksi suotautumisen teoriaa kuitu-vesi-suspensiossa, minkä jälkeen esiteltiin suotautumisnopeuteen vaikuttavia fysikaalisia ja kemiallisia vaikutusmekanismeja. Seuraavaksi kuvattiin massan pesun yleisiä perusteita sekä teoriaa puumassapesureissa. Lopuksi tarkasteltiin pesurien kytkeytymistä muuhun kuitulinjaan sekä prosessista johtuvia pesun toiminnan ulkoisia häiriötekijöitä. Kokeellisen osan aluksi tarkasteltiin paine- ja lämpötilamittauksien avulla massapesurissa vallitsevia prosessioloja. Mittaustulosten perusteella pumppausolot pesurin suodoslinjoissa ovat vaikeahkot ja häiriötilanteita voi esiintyä, mutta käytäntö on osoittanut tästä olevan vain harvoin haittaa prosessin toiminnalle. Pesureissa toteutuneet syrjäytysnopeudet laskettiin ja niitä verrattiin syrjäytystestien antamiin tuloksiin. Kuitulinjasta riippuen testin vastaavuus tehdasprosessiin vaihteli suuresti. Syrjäytystesteillä kokeiltiin myös tehdasprosesseissa usein esiintyvien muuttujien vaikutusta sellukakun syrjäytettävyyteen. Kakun paksuus ja syrjäytyslämpötila vaikuttivat syrjäytysnopeuteen Darcyn lain mukaisesti. Alipaineen massakakun alapuolella havaittiin huonontavan syrjäytysnopeutta verrattuna tilanteeseen, jossa kakun alla vallitsi ilmanpaine. Tämä havainto on selvästi ristiriidassa suotautumisen teorian kanssa. Massakakun muodostumis-pH osoittautui ratkaisevaksi lopulliselle syrjäytysnopeudelle, sillä alkalisissa oloissa muodostetun kuitukakun syrjäytysnopeus ei enää parantunut happamalla syrjäytysnesteellä. Happamissa oloissa muodostetun kakun syrjäytysnopeus oli alkalisista parempi, mutta se alkoi hitaasti alentua, kun syrjäytysneste vaihtui alkaliseen. Massan laimentaminen ennen syrjäytystä alkalisella tehdassuodoksella puhtaan veden sijasta alensi ligniinipitoisella massalla lopullista syrjäytysnopeutta. Shirato-Tillerin mallilla ja Jönssonin staattisella mallilla simuloitiin numeerisesti syrjäytystestiä kahdessa eri pH:ssa, ja simulointituloksia verrattiin vastaavissa oloissa tehtyihin syrjäytystesteihin. Shirato-Tillerin mallin antamien syrjäytysnopeuksien havaittiin olevan lähellä syrjäytystestien nopeuksia, kun Jönssonin mallin antamat tulokset jäivät huomattavasti testituloksia alemmiksi. Herkkyystarkastelussa havaittiin mallien olevan varsin herkkiä parametrien virheille. Hajonta vaadittavien kuituparametrien määrityksissä ja menetelmien työläys rajoittavat numeerisen simuloinnin käytettävyyttä, sillä kuituparametrien määrityksen vaatima työmäärä on ainakin toistaiseksi syrjäytystestiä suurempi. Lopuksi todettiin, että oikeiden syrjäytysolosuhteiden käyttö on ensiarvoisen tärkeää oikeiden tulosten saamiseksi sekä kokeellisessa että numeerisessa simuloinnissa. Nykyinen syrjäytystestilaitteisto on pienin muutoksin käyttökelpoinen, kun massan testaus prosessioloissa tulee rutiininomaiseksi.