947 resultados para dynamic parameters identification
Resumo:
Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with osteoporosis and fragility fractures. The objectives of this study were to assess static and dynamic indices of cancellous and cortical bone structure in postmenopausal women with COPD. Twenty women with COPD who had not received chronic oral glucocorticoids underwent bone biopsies after double tetracycline labeling. Biopsies were analyzed by histomorphometry and mu CT and compared with age-matched controls. Distribution of the patients according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) was: Type I (15%), Type II (40%), Type III (30%), and Type IV (15%). Mean (+/-SD) cancellous bone volume (15.20 +/- 5.91 versus 21.34 +/- 5.53%, p = .01), trabecular number (1.31 +/- 0.26 versus 1.77 +/- 0.51/mm, p = .003), and trabecular thickness (141 +/- 23 versus 174 +/- 36 mu m, p = .006) were lower in patients than in controls. Connectivity density was lower in COPD (5.56 +/- 2.78 versus 7.94 +/- 3.08 mu m, p = .04), and correlated negatively with smoking (r = -0.67; p = .0005). Trabecular separation (785 +/- 183 versus 614 +/- 136 mu m, p = .01) and cortical porosity (4.11 +/- 1.02 versus 2.32 +/- 0.94 voids/mm(2); p < .0001) were higher in COPD while cortical width (458 +/- 214 versus 762 +/- 240 mu m; p < .0001) was lower. Dynamic parameters showed significantly lower mineral apposition rate in COPD (0.56 +/- 0.16 versus 0.66 +/- 0.12 mu m/day; p = .01). Patients with more severe disease, GOLD III and IV, presented lower bone formation rate than GOLDI and II (0.028 +/- 0.009 versus 0.016 +/- 0.011 mu m(3)/mu m(2)/day;p = 04). This is the first evaluation of bone microstructure and remodeling in COPD. The skeletal abnormalities seen in cancellous and cortical bone provide an explanation for the high prevalence of vertebral fractures in this disease. (C) 2010 American Society for Bone and Mineral Research.
Resumo:
In critically ill patients, it is important to predict which patients will have their systemic blood flow increased in response to volume expansion to avoid undesired hypovolemia and fluid overloading. Static parameters such as the central venous pressure, the pulmonary arterial occlusion pressure, and the left ventricular end-diastolic dimension cannot accurately discriminate between responders and nonresponders to a fluid challenge. In this regard, respiratory-induced changes in arterial pulse pressure have been demonstrated to accurately predict preload responsiveness in mechanically ventilated patients. Some experimental and clinical studies confirm the usefulness of arterial pulse pressure as a useful tool to guide fluid therapy in critically ill patients.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
The purpose of this study was to describe the patterns of pelvic rotational asymmetry in the transverse plane and identify the possible factors related to this problem. One thousand and forty-five patients with cerebral palsy (CP) and complete documentation in the gait laboratory were reviewed in a retrospective study. Pelvic asymmetry in the transverse plane was observed in 52.7% of the patients; and to identify the possible causes of pelvic retraction, clinical (Thomas test, popliteal angle, and gastrocnemius tightness) and dynamic parameters (mean rotation of the hip in stance, minimum hip flexion, minimum knee flexion, and peak ankle dorsiflexion) were evaluated. The association between these parameters and pelvic retraction was assessed statistically. The results showed that 75.7% of patients with asymmetric pattern of the pelvis had clinical diagnosis of diplegic spastic CP. Among the patients with asymmetrical CP, the most common pattern was pelvic retraction on the affected side. The relationship between pelvic retraction and internal hip rotation was stronger in patients with asymmetrical diplegic CP than in those with hemiplegic (P<0.001) or symmetrical diplegic CP (P=0.014). All of the patients exhibited a significant association among clinical parameters (Thomas test, popliteal angle, and gastrocnemius tightness) and pelvic retraction. In conclusion, pelvic retraction seems to be a multifactorial problem, and the etiology can change according to topographic classification, which must be taken into account during the decision-making process in patients with CP. J Pediatr Orthop B 18:320-324 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Background and objective: Dynamic indices represented by systolic pressure variation and pulse pressure variation have been demonstrated to be more accurate than filling pressures in predicting fluid responsiveness. However, the literature is scarce concerning the impact of different ventilatory modes on these indices. We hypothesized that systolic pressure variation or pulse pressure variation could be affected differently by volume-controlled ventilation and pressure-controlled ventilation in an experimental model, during normovolaemia and hypovolaemia. Method: Thirty-two anaesthetized rabbits were randomly allocated into four groups according to ventilatory modality and volaemic status where G1-ConPCV was the pressure-controlled ventilation control group, G2-HemPCV was associated with haemorrhage, G3-ConVCV was the volume-controlled ventilation control group and G4-HemVCV was associated with haemorrhage. In the haemorrhage groups, blood was removed in two stages: 15% of the estimated blood volume withdrawal at M1, and, 30 min later, an additional 15% at M2. Data were submitted to analysis of variance for repeated measures; a value of P < 0.05 was considered to be statistically significant. Results: At MO (baseline), no significant differences were observed among groups. At M1, dynamic parameters differed significantly among the control and hypovolaemic groups (P < 0.05) but not between ventilation modes. However, when 30% of the estimated blood volume was removed (M2), dynamic parameters became significantly higher in animals under volume-controlled ventilation when compared with those under pressure-controlled ventilation. Conclusions: Under normovolaemia and moderate haemorrhage, dynamic parameters were not influenced by either ventilatory modalities. However, in the second stage of haemorrhage (30%), animals in volume-controlled ventilation presented higher values of systolic pressure variation and pulse pressure variation when compared with those submitted to pressure-controlled ventilation.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Abstract Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.
Resumo:
Twenty-four surgical patients of both sexes without cardiac, hepatic, renal or endocrine dysfunctions were divided into two groups: 10 cardiac surgical patients submitted to myocardial revascularization and cardiopulmonary bypass (CPB), 3 females and 7 males aged 65 ± 11 years, 74 ± 16 kg body weight, 166 ± 9 cm height and 1.80 ± 0.21 m2 body surface area (BSA), and control, 14 surgical patients not submitted to CPB, 11 female and 3 males aged 41 ± 14 years, 66 ± 14 kg body weight, 159 ± 9 cm height and 1.65 ± 0.16 m2 BSA (mean ± SD). Sodium diclofenac (1 mg/kg, im Voltaren 75® twice a day) was administered to patients in the Recovery Unit 48 h after surgery. Venous blood samples were collected during a period of 0-12 h and analgesia was measured by the visual analogue scale (VAS) during the same period. Plasma diclofenac levels were measured by high performance liquid chromatography. A two-compartment open model was applied to obtain the plasma decay curve and to estimate kinetic parameters. Plasma diclofenac protein binding decreased whereas free plasma diclofenac levels were increased five-fold in CPB patients. Data obtained for analgesia reported as the maximum effect (EMAX) were: 25% VAS (CPB) vs 10% VAS (control), P<0.05, median measured by the visual analogue scale where 100% is equivalent to the highest level of pain. To correlate the effect versus plasma diclofenac levels, the EMAX sigmoid model was applied. A prolongation of the mean residence time for maximum effect (MRTEMAX) was observed without any change in lag-time in CPB in spite of the reduced analgesia reported for these patients, during the time-dose interval. In conclusion, the extent of plasma diclofenac protein binding was influenced by CPB with clinically relevant kinetic-dynamic consequences
Resumo:
Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
El compromiso del sistema cardiovascular es frecuente en los pacientes en estado crítico, por tanto la monitorización hemodinámica es esencial para un tratamiento apropiado dirigido a objetivos terapéuticos en este grupo de pacientes. La monitorización hemodinámica del gasto cardíaco y la estimación del volumen intravascular son fundamentales para el manejo de los pacientes pediátricos en estado crítico, la medición del gasto cardíaco es uno de los principales elementos para evaluar la situación hemodinámica y la perfusión tisular de un paciente ayudando a dirigir el tratamiento y a monitorizar la respuesta clínica en pacientes con choque séptico. La hipovolemia es una causa común para la falla circulatoria en pacientes en condición crítica, el encontrar un método confiable para medición de precarga es importante para guiar la administración de líquidos. Tradicionalmente se han utilizado medidas de la volemia asociadas como la presión venosa central (PVC), frecuencia cardiaca (FC), presión arterial (PA) y el gasto urinario. Estos indicadores tienen grandes factores de distracción que hacen que su valor sea limitado y por tanto se tengan que buscar alternativas más confiables. En años recientes se han postulado parámetros dinámicos para la evaluación de la precarga, entre ellos uno de los mas ampliamente estudiado es la medición de la variabilidad de Volumen sistólico (VVS); Este valor se basa en el concepto de que durante la inspiración, la disminución del retorno venoso produce una disminución del Volumen sistólico, lo cual se manifiesta como una disminución en la onda de pulso; Por tanto en una situación de hipovolemia esta diferencia será mayor, dado que será más evidente la disminución del volumen al final de la diástole. En adultos este parámetro se ha convertido en una herramienta útil para evaluar estado de volumen de los pacientes que se encuentran en estado crítico y ha demostrado su utilidad para predecir respuesta a administración de fluidos en diferentes poblaciones de pacientes. En la actualidad no hay estudios en niños que comparen la medición de VVS contra dichas medidas tradicionales de volemia.
Resumo:
This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described. For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example involving a simulated fermentation process, it is shown that a linear-wavelet network yields a smaller approximation error when compared with a wavelet network with the same number of regressors. The proposed technique is also applied to the identification of a pressure plant from experimental data. In this case, the results show that the introduction of wavelets considerably improves the prediction ability of a linear model. Standard errors on the estimated model coefficients are also calculated to assess the numerical conditioning of the identification process.
Resumo:
We present a site-resolved study of stow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of stow (15)N-(1)H motions of the SH3 domain of chicken a-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.
Resumo:
A tangential filtration process was implemented in this study using porous ceramic tubes made of alpha-alumina produced by the slip-casting technique. These tubes were sintered at 1450 degrees C and characterized by mercury intrusion porosimetry, which revealed a mean pore size of 0.5 mu m. The tubes were chemically impregnated with a zirconium citrate solution, after which they were calcined and heat treated at temperatures of up to 600 and 900 degrees C to eliminate volatile organic compounds and transform the zirconium citrate into zirconium oxide impregnated in the alumina in the form of nanoparticle agglomerates. The microporous pipes were tested on a microfiltration hydraulic system to analyze their performance in the demulsification of sunflower oil and water mixtures. The fluid-dynamic parameters of Reynolds number and transmembrane pressure were varied in the process. The volume of permeate was analyzed by measuring the Total Organic Carbon concentration (TOC), which indicated 99% of oil phase retention. The emulsified mixture was characterized by optical microscopy, while the morphology and composition of the impregnated microporous tubes were analyzed by scanning electron microscopy (SEM). Quantification of the TOC values for the tube impregnated once at 600 degrees C showed the best demulsification performance, with the concentration on permeate smaller than 10 mg/L. The impregnated tube sintered once at 900 degrees C presented low carbon concentration (smaller than 20 mg/L), has the advantage of presenting the greatest trans-membrane flux in relation to the other microporous tube. (c) 2006 Elsevier B.V. All rights reserved.