990 resultados para dye treatment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azo dyes constitute the largest group of colorants used in industry and can pass through municipal waste water plants nearly unchanged due to their resistance to aerobic treatment, which potentially exposes humans and local biota to adverse effects. Unfortunately, little is known about their environmental fate. Under anaerobic conditions, some azo dyes are cleaved by microorganisms forming potentially carcinogenic aromatic amines. In the present study, the azo dye Disperse Orange 1, widely used in textile dyeing, was tested using the comet, Salmonella/microsome mutagenicity, cell viability, Daphnia similis and Microtox (R) assays. The human hepatoma cell line (HepG2) was used in the comet assay and for cell viability. In the mutagenicity assay. Salmonella typhimurium strains with different levels of nitroreductase and o-acetyltransferase were used. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 mu g/mL. In the mutagenicity assay, greater responses were obtained with the strains TA98 and YG1041, suggesting that this compound mainly induces frameshift mutations. Moreover, the mutagenicity was greatly enhanced with the strains overproducing nitroreductase and o-acetyltransferase, showing the importance of these enzymes in the mutagenicity of this dye. In addition, the compound induced apoptosis after 72 h in contact with the HepG2 cells. No toxic effects were observed for either D. similis or Vibrio fischeri. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertrophic scars are common problems and represent a challenging condition to treat. Fractional photothermolysis has been effective at resurfacing photodamaged skin, acne scars, and atrophic scars, but there are few reports on its use for hypertrophic scars. To evaluate the safety and efficacy of 1,550-nm erbium-doped fiber laser treatment of hypertrophic scars in eight patients. Eight patients (skin phototypes II-IV) with hypertrophic scars received monthly treatments with a 1,550-nm erbium-doped fiber laser. Energy settings ranged from 35 to 50 mJ, and eight to 10 passes were applied with treatment levels 6 to 8. An independent physician evaluator assessed the treatment response by comparing pre- and posttreatment clinical photographs using a quartile grading scale (grade 1, <= 25%=minimal to no improvement; grade 2, 26-50%=moderate improvement; grade 3, 51-75%=marked improvement; grade 4, > 75%=near total improvement. At four weeks after the last treatment session, a mean grade of 2.4 was achieved based on an independent physician`s clinical assessment. Improvement in pigmentation occurred in all hyperpigmented scars. Hypertrophic scars can be effectively and safely improved with 1,550-nm erbium-doped fiber laser treatment. The authors have indicated no significant interest with commercial supporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To verify the influence of cavity access diameter on demineralized dentin removal in the ART approach. Methods: 40 non-carious human premolars were randomly divided into four groups. The occlusal surface was ground flat and the teeth were sectioned mesio-distally. The hemi-sections were reassembled and occlusal access preparations were carried out using ball-shaped diamonds. The resulting size of the occlusal opening was 1.0 mm, 1.4 mm, 1.6 mm and 1.8 mm for Groups A, B, C, and D, respectively. Standardized artificial carious lesions were created and demineralized dentin was excavated. After excavation, the cavities were analyzed using: (a) the tactile method, (b) caries-detection dye to stain demineralized dentin, as proposed by Smales & Fang, and (c) Demineralized Tissue Removal index, as proposed in this study. Statistical analysis was performed using Fisher, Spearman correlation coefficient, kappa, Kruskal-Wallis and Miller tests (P < 0.05). Results: The three methods of evaluation showed no significant difference between Groups A vs. B, and C vs. D, while statistically significant differences were observed between Groups A vs. C, A vs. D, B vs. C and B vs. D. Based on the results of this study, the size of occlusal access significantly affected the efficacy of demineralized tissue removal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythrosine B is widely used for coloring in various applications, especially in the food industry, despite its already proved toxicity and carcinogenicity. The agrowaste pumpkin seed hulls were applied as potential adsorbent for the removal of Erythrosine from aqueous solutions. Adsorption mechanism and kinetics were analyzed for design purposes. The seed hulls were characterized by specific techniques before and after dye retention. It was found that the attachment of Erythrosine B molecules on adsorbent surface may be attributed to the interactions between carboxyl and/or carbonyl groups of both dye and agrowaste wall components. A univariate approach followed by a factorial design was applied to study and analyze the experimental results as well as to estimate the combined effects of the process factors on the removal efficiency and dye uptake. Adsorption mechanism may be predominantly due to intraparticle diffusion, dependent on pore size. The four equilibrium models applied fitted the data well; the maximum adsorption capacity for Erythrosine was 16.4 mg/g. The results showed that adsorbent is effective for Erythrosine B removal for a large concentration range in aqueous solutions (5400 mg/L) in batch systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylene blue (MB) and light are used for virus inactivation of plasma for transfusion. However, the presence of MB has been the subject of concern, and efforts have been made to efficiently remove the dye after photo-treatment. For this study, plasma was collected by apheresis from 10 donors (group A), then treated using the MacoPharma THERAFLEX procedure (MB; 1 microM, and light exposure; 180 J/cm(2)) (group B), and finally filtered in order to remove the dye (group C). Proteins were analyzed by two-dimensional electrophoresis, and peptides showing modifications were characterized by mass spectrometry. Clottable and antigenic fibrinogen levels, as well as fibrin polymerization time were measured. Analyses of the gels focused on a region corresponding to pI between 4.5 and 6.5, and M(r) from 7000 to 58 000. In this area, 387 +/- 47 spots matched, and four of these spots presented significant modifications. They corresponded to changes of the gamma-chain of fibrinogen, of transthyretin, and of apolipoprotein A-I, respectively. A decrease of clottable fibrinogen and a prolongation of fibrin polymerization time were observed in groups B and C. Removal of MB by filtration was not responsible for additional protein alterations. The effect of over-treatment of plasma by very high concentrations of MB (50 microM) in association with prolonged light exposure (3 h) was also analyzed, and showed complex alterations of most of the plasma proteins, including fibrinogen gamma-chain, transthyretin, and apolipoprotein A-I. Our data indicates that MB treatment at high concentration and prolonged illumination severely injure plasma proteins. By contrast, at the MB concentration used to inactivate viruses, damages are apparently very restricted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Port-wine stains (PWS) are malformations of capillaries in 0.3% of newborn children. The treatment of choice is by pulsed dye LASER (PDL), and requires several sessions. The efficacy of this treatment is at present evaluated on the basis of clinical inspection and of digital photographs taken throughout the treatment. LASER-Doppler imaging (LDI) is a noninvasive method of imaging the perfusion of the tissues by the microcirculatory system (capillaries). The aim of this paper is to demonstrate that LDI allows a quantitative, numerical evaluation of the efficacy of the PDL treatment of PWS. METHOD: The PDL sessions were organized according to the usual scheme, every other month, from September 1, 2012, to September 30, 2013. LDI imaging was performed at the start and at the conclusion of the PDL treatment, and simultaneously on healthy skin in order to obtain reference values. The results evidenced by LDI were analyzed according to the "Wilcoxon signed-rank" test before and after each session, and in the intervals between the three PDL treatment sessions. RESULTS: Our prospective study is based on 20 new children. On average, the vascularization of the PWS was reduced by 56% after three laser sessions. Compared with healthy skin, initial vascularization of PWS was 62% higher than that of healthy skin at the start of treatment, and 6% higher after three sessions. During the 2 months between two sessions, vascularization of the capillary network increased by 27%. CONCLUSION: This study shows that LDI can demonstrate and measure the efficacy of PDL treatment of PWS in children. The figures obtained when measuring the results by LDI corroborate the clinical assessments and may allow us to refine, and perhaps even modify, our present use of PDL and thus improve the efficacy of the treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to systematically explore the effect of the synthesis conditions of ZnO structures, immobilized on different substrates by hydrothermal treatment, in its photocatalytic activity. A circumscribed central composite design of experiments was used to analyze the effects of reagents stoichiometry, reaction time and temperature, covering a wide range of these variables. The substrates used were etched glass, copper and zinc foils. The photocatalytic activity of the as-obtained ZnO samples was evaluated through photocatalytic degradation of rhodamine B (RhB) in aqueous solution under UV irradiation. Zinc foils presented the best immobilized film quality and the maximum dye removal was 80% in one hour of UV exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of the direct addition of pentoxifylline (PF) to the ejaculates of men with poor sperm quality before freezing on post-thaw sperm motility, viability, acrosome integrity, and agonist-induced acrosome reaction. Semen specimens from 16 infertile men with impaired sperm count and motility (oligoasthenozoospermia) were divided into two equal aliquots: one received no treatment (control) while the other was incubated with 5 mM PF (treated). Both aliquots were cryopreserved by the liquid nitrogen vapor method. Motility was assessed according to WHO criteria. Acrosome integrity and spontaneous and calcium ionophore-induced acrosome reactions were assessed with fluorescein isothiocyanate-conjugated peanut agglutinin combined with a supra-vital dye (Hoechst-33258). Cryopreservation impaired sperm motility (percentage reduction: 87.4 (interquartile range, IQ: 70.3-92.9) vs 89.1 (IQ: 72.7-96.0%)), viability (25.9 (IQ: 22.2-29.7) vs 25.6 (IQ: 19.7-40.3%)) and acrosome integrity (18.9 (IQ: 5.4-38.9) vs 26.8 (IQ: 0.0-45.2%)) to the same extent in both treated and control aliquots. However, PF treatment before freezing improved the acrosome reaction to ionophore challenge test scores in cryopreserved spermatozoa (9.7 (IQ: 6.6-19.7) vs 4.8 (IQ: 0.5-6.8%); P = 0.002). These data show that pre-freeze treatment of poor quality human sperm with pentoxifylline did not improve post-thaw motility or viability nor did it prevent acrosomal loss during the freeze-thaw process. However, PF, as used, improved the ability of thawed spermatozoa to undergo the acrosome reaction in response to calcium ionophore. The present data indicate that treatment of poor quality human sperm with PF may enhance post-thaw sperm fertilizing ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the work reported in this thesis was to study and to clarify the effect of polyelectrolyte multilayer surface treatment on inkjet ink spreading, absorption and print quality. Surface sizing with a size press, film press with a pilot scale coater, and spray coating, have been used to surface treat uncoated wood-free, experimental wood-free and pigmentcoated substrates. The role of the deposited cationic (polydiallydimethylammonium chloride, PDADMAC) and anionic (sodium carboxymethyl cellulose, NaCMC) polyelectrolyte layers with and without nanosilica, on liquid absorption and spreading was studied in terms of their interaction with water-based pigmented and dye-based inkjet inks. Contact angle measurements were made in attempt to explain the ink spreading and wetting behavior on the substrate. First, it was noticed that multilayer surface treatment decreased the contact angle of water, giving a hydrophilic character to the surface. The results showed that the number of cationic-anionic polyelectrolyte layers or the order of deposition of the polyelectrolytes had a significant effect on the print quality. This was seen for example as a higher print density on layers with a cationic polyelectrolyte in the outermost layer. The number of layers had an influence on the print quality; the print density increased with increasing number of layers, although the increase was strongly dependent on ink formulation and chemistry. The use of nanosilica clearly affected the rate of absorption of polar liquids, which also was seen as a higher density of the black dye-based print. Slightly unexpected, the use of nanosilica increased the tendency for lateral spreading of both the pigmented and dye-based inks. It was shown that the wetting behavior and wicking of the inks on the polyelectrolyte coatings was strongly affected by the hydrophobicity of the substrate, as well as by the composition or structure of the polyelectrolyte layers. Coating only with a cationic polyelectrolyte was not sufficient to improve dye fixation, but it was demonstrated that a cationic-anionic-complex structure led to good water fastness. A threelayered structure gave the same water fastness values as a five-layered structure. Interestingly, the water fastness values were strongly dependent not only on the formed cation-anion polyelectrolyte complexes but also on the tendency of the coating to dissolve during immersion in water. Results showed that by optimizing the chemistry of the layers, the ink-substrate interaction can be optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nondestructive photothermal methods as well as optical absorption and fluorescence spectroscopy are utilized to characterise three different materials, both thermally and optically. The possibility of using montmorillonite clay minerals, after textile waste-water treatment, is investigated for further applications. The laser induced luminescence studies and thermal characterisation of certain rare earth titanates prepared by self propagating high temperature synthesis method are also presented. Moreover, effort is made to characterise rare earth doped sol gel silica glasses with the help of these nondestructive techniques.