969 resultados para duration model
Resumo:
Annual Meeting of the Biophysical Society, San Diego, USA
Resumo:
Cardiostim 2012, Nice, France
Resumo:
There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.
Resumo:
Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström’s sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St–Co, Co–St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St–Co than for Co–St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.
Resumo:
Mode of access: Internet.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.
Resumo:
This study ascertained whether under dental erosion models that closely mimics the real-life situation enamel and root dentin from bovine origin would be reliable substitutes for human counterparts. Through a 2x2 crossover design, in a first trial, 14 volunteers wore a palatal device containing slabs of bovine and human enamel. Half of the participants ingested (4x daily, for 10 days) orange juice first, crossing over to mineral water, while the remainder received the reverse sequence. In a second trial, volunteers wore devices with slabs of bovine and human root dentin. Except for the duration of each intraoral phase, which lasted 2 rather 10 days, the experiment with root dentin run exactly as for enamel. Dental substrates were analyzed for surface microhardness. Two-way ANOVAs (α=0.05) indicated no difference between the microhardness values recorded for human and bovine enamel (p=0.1350), but bovine root dentin had lower microhardness compared to its human counterpart (p=0.0432). While bovine enamel can reliably substitute its human counterpart in in situ dental erosion models, bovine root dentin does not seem to be a viable alternative to the corresponding human tissue.
Resumo:
The implementation of confidential contracts between a container liner carrier and its customers, because of the Ocean Shipping Reform Act (OSRA) 1998, demands a revision in the methodology applied in the carrier's planning of marketing and sales. The marketing and sales planning process should be more scientific and with a better use of operational research tools considering the selection of the customers under contracts, the duration of the contracts, the freight, and the container imbalances of these contracts are basic factors for the carrier's yield. This work aims to develop a decision support system based on a linear programming model to generate the business plan for a container liner carrier, maximizing the contribution margin of its freight.
Resumo:
The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.
Resumo:
A mathematical model was developed to estimate HIV incidence in NSW prisons. Data included: duration of imprisonment; number of inmates using each needle; lower and higher number of shared injections per IDU per week; proportion of IDUs using bleach; efficacy of bleach; HIV prevalence and probability of infection. HIV prevalence in IDUs in prison was estimated to have risen from 0.8 to 5.7% (12.2%) over 180 weeks when using lower (and higher) values for frequency of shared injections. The estimated minimum (and maximum) number of IDU inmates infected with HIV in NSW prisons was 38 (and 152) in 1993 according to the model. These figures require confirmation by seroincidence studies. (C) 1998 Published by Elsevier Science Ireland Ltd. All rights reserved.