996 resultados para dually discrete space
Resumo:
We show how mapping techniques inherent to N2-dimensional discrete phase spaces can be used to treat a wide family of spin systems which exhibits squeezing and entanglement effects. This algebraic framework is then applied to the modified Lipkin-Meshkov-Glick (LMG) model in order to obtain the time evolution of certain special parameters related to the Robertson- Schrödinger (RS) uncertainty principle and some particular proposals of entanglement measure based on collective angular-momentum generators. Our results reinforce the connection between both the squeezing and entanglement effects, as well as allow to investigate the basic role of spin correlations through the discrete representatives of quasiprobability distribution functions. Entropy functionals are also discussed in this context. The main sequence correlations → entanglement → squeezing of quantum effects embraces a new set of insights and interpretations in this framework, which represents an effective gain for future researches in different spin systems. © 2013 World Scientific Publishing Company.
Resumo:
This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power. (C) 2009 Optical Society of America
Resumo:
Testing ecological models for management is an increasingly important part of the maturation of ecology as an applied science. Consequently, we need to work at applying fair tests of models with adequate data. We demonstrate that a recent test of a discrete time, stochastic model was biased towards falsifying the predictions. If the model was a perfect description of reality, the test falsified the predictions 84% of the time. We introduce an alternative testing procedure for stochastic models, and show that it falsifies the predictions only 5% of the time when the model is a perfect description of reality. The example is used as a point of departure to discuss some of the philosophical aspects of model testing.
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
Resumo:
We developed a procedure that combines three complementary computational methodologies to improve the theoretical description of the electronic structure of nickel oxide. The starting point is a Car-Parrinello molecular dynamics simulation to incorporate vibrorotational degrees of freedom into the material model. By means ofcomplete active space self-consistent field second-order perturbation theory (CASPT2) calculations on embedded clusters extracted from the resulting trajectory, we describe localized spectroscopic phenomena on NiO with an efficient treatment of electron correlation. The inclusion of thermal motion into the theoretical description allowsus to study electronic transitions that, otherwise, would be dipole forbidden in the ideal structure and results in a natural reproduction of the band broadening. Moreover, we improved the embedded cluster model by incorporating self-consistently at the complete active space self-consistent field (CASSCF) level a discrete (or direct) reaction field (DRF) in the cluster surroundings. The DRF approach offers an efficient treatment ofelectric response effects of the crystalline embedding to the electronic transitions localized in the cluster. We offer accurate theoretical estimates of the absorption spectrum and the density of states around the Fermi level of NiO, and a comprehensive explanation of the source of the broadening and the relaxation of the charge transferstates due to the adaptation of the environment
Resumo:
Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.
Resumo:
Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.
Resumo:
An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.
Resumo:
This thesis is an attempt to initiate the development of a discrete geometry of the discrete plane H = {(qmxo,qnyo); m,n e Z - the set of integers}, where q s (0,1) is fixed and (xO,yO) is a fixed point in the first quadrant of the complex plane, xo,y0 ¢ 0. The discrete plane was first considered by Harman in 1972, to evolve a discrete analytic function theory for geometric difference functions. We shall mention briefly, through various sections, the principle of discretization, an outline of discrete a alytic function theory, the concept of geometry of space and also summary of work done in this thesis
Resumo:
There is a recent trend to describe physical phenomena without the use of infinitesimals or infinites. This has been accomplished replacing differential calculus by the finite difference theory. Discrete function theory was first introduced in l94l. This theory is concerned with a study of functions defined on a discrete set of points in the complex plane. The theory was extensively developed for functions defined on a Gaussian lattice. In 1972 a very suitable lattice H: {Ci qmxO,I qnyo), X0) 0, X3) 0, O < q < l, m, n 5 Z} was found and discrete analytic function theory was developed. Very recently some work has been done in discrete monodiffric function theory for functions defined on H. The theory of pseudoanalytic functions is a generalisation of the theory of analytic functions. When the generator becomes the identity, ie., (l, i) the theory of pseudoanalytic functions reduces to the theory of analytic functions. Theugh the theory of pseudoanalytic functions plays an important role in analysis, no discrete theory is available in literature. This thesis is an attempt in that direction. A discrete pseudoanalytic theory is derived for functions defined on H.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.
Resumo:
This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.
Resumo:
The discrete Fourier transmission spread OFDM DFTS-OFDM) based single-carrier frequency division multiple access (SC-FDMA) has been widely adopted due to its lower peak-to-average power ratio (PAPR) of transmit signals compared with OFDM. However, the offset modulation, which has lower PAPR than general modulation, cannot be directly applied into the existing SC-FDMA. When pulse-shaping filters are employed to further reduce the envelope fluctuation of transmit signals of SC-FDMA, the spectral efficiency degrades as well. In order to overcome such limitations of conventional SC-FDMA, this paper for the first time investigated cyclic prefixed OQAMOFDM (CP-OQAM-OFDM) based SC-FDMA transmission with adjustable user bandwidth and space-time coding. Firstly, we propose CP-OQAM-OFDM transmission with unequally-spaced subbands. We then apply it to SC-FDMA transmission and propose a SC-FDMA scheme with the following features: a) the transmit signal of each user is offset modulated single-carrier with frequency-domain pulse-shaping; b) the bandwidth of each user is adjustable; c) the spectral efficiency does not decrease with increasing roll-off factors. To combat both inter-symbolinterference and multiple access interference in frequencyselective fading channels, a joint linear minimum mean square error frequency domain equalization using a prior information with low complexity is developed. Subsequently, we construct space-time codes for the proposed SC-FDMA. Simulation results confirm the powerfulness of the proposed CP-OQAM-OFDM scheme (i.e., effective yet with low complexity).
Resumo:
Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =