992 resultados para donor-acceptor complex
Resumo:
This chapter presents selected literature examples to review the development of the use of donor–acceptor π–π stacking interactions as transient cross-links in supramolecular polymer networks. The chapter examines notable examples of these highly specific and directional interactions and illustrates how they can be utilised to reliably produce functional supramolecular, self-assembled systems. Knowledge gained from these fundamental studies has enabled the design, synthesis and application of donor–acceptor stacked supramolecular motifs in non-covalent polymer networks, which is exemplified through detailing the production, physical properties and optimisation of healable materials.
Resumo:
Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.
Resumo:
A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.
Resumo:
This thesis deals with the investigation of charge generation and recombination processes in three different polymer:fullerene photovoltaic blends by means of ultrafast time-resolved optical spectroscopy. The first donor polymer, namely poly[N-11"-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), is a mid-bandgap polymer, the other two materials are the low-bandgap donor polymers poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT) and poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT). Despite their broader absorption, the low-bandgap polymers do not show enhanced photovoltaic efficiencies compared to the mid-bandgap system.rnrnTransient absorption spectroscopy revealed that energetic disorder plays an important role in the photophysics of PCDTBT, and that in a blend with PCBM geminate losses are small. The photophysics of the low-bandgap system PCPDTBT were strongly altered by adding a high boiling point cosolvent to the polymer:fullerene blend due to a partial demixing of the materials. We observed an increase in device performance together with a reduction of geminate recombination upon addition of the cosolvent. By applying model-free multi-variate curve resolution to the spectroscopic data, we found that fast non-geminate recombination due to polymer triplet state formation is a limiting loss channel in the low-bandgap material system PCPDTBT, whereas in PSBTBT triplet formation has a smaller impact on device performance, and thus higher efficiencies are obtained.rn
Resumo:
In dieser Arbeit werden die Dynamiken angeregter Zustände in Donor-Akzeptorsystemen für Energieumwandlungsprozesse mit ultraschneller zeitaufgelöster optischer Spektroskopie behandelt. Der Hauptteil dieser Arbeit legt den Fokus auf die Erforschung der Photophysik organischer Solarzellen, deren aktive Schichten aus diketopyrrolopyrrole (DPP) basierten Polymeren mit kleiner Bandlücke als Elektronendonatoren und Fullerenen als Elektronenakzeptoren bestehen. rnEin zweiter Teil widmet sich der Erforschung von künstlichen primären Photosynthesereaktionszentren, basierend auf Porphyrinen, Quinonen und Ferrocenen, die jeweils als Lichtsammeleinheit, Elektronenakzeptor beziehungsweise als Elektronendonatoren eingesetzt werden, um langlebige ladungsgetrennte Zustände zu erzeugen.rnrnZeitaufgelöste Photolumineszenzspektroskopie und transiente Absorptionsspektroskopie haben gezeigt, dass Singulettexzitonenlebenszeiten in den Polymeren PTDPP-TT und PFDPP-TT Polymeren kurz sind (< 20 ps) und dass in Mischungen der Polymere mit PC71BM geminale Rekombination von gebundenen Ladungstransferzuständen ein Hauptverlustkanal ist. Zudem wurde in beiden Systemen schnelle nichtgeminale Rekombination freier Ladungen zu Triplettzuständen auf dem Polymer beobachtet. Für das Donor-Akzeptor System PDPP5T:PC71BM wurde nachgewiesen, dass die Zugabe eines Lösungsmittels mit hohem Siedepunkt, und zwar ortho-Dichlorbenzol, die Morphologie der aktiven Schicht stark beeinflusst und die Solarzelleneffizienz verbessert. Der Grund hierfür ist, dass die Donator- und Akzeptormaterialien besser durchmischt sind und sich Perkolationswege zu den Elektroden ausgebildet haben, was zu einer verbesserten Ladungsträgergeneration und Extraktion führt. Schnelle Bildung des Triplettzustands wurde in beiden PDPP5T:PC71BM Systemen beobachtet, da der Triplettzustand des Polymers über Laungstransferzustände mit Triplettcharakter populiert werden kann. "Multivariate curve resolution" (MCR) Analyse hat eine starke Intensitätsabhängigkeit gezeigt, was auf nichtgeminale Ladungsträgerrekombination in den Triplettzustand hinweist.rnrnIn den künstlichen primären Photosynthesereaktionszentren hat transiente Absorptionsspektroskopie bestätigt, dass photoinduzierter Ladungstransfer in Quinon-Porphyrin (Q-P) und Porphyrin-Ferrocen (P-Fc) Diaden sowie in Quinon-Porphyrin-Ferrocen (Q-P-Fc) Triaden effizient ist. Es wurde jedoch auch gezeigt, dass in den P-Fc unf Q-P-Fc Systemen die ladungsgetrennten Zustände in den Triplettzustand der jeweiligen Porphyrine rekombinieren. Der ladungsgetrennte Zustand konnte in der Q-P Diade durch Zugabe einer Lewissäure signifikant stabilisiert werden.
Resumo:
An efficient synthetic approach to a symmetrically functionalized tetrathiafulvalene (TTF) derivative with two diamine moieties, 2-[5,6-diamino-4,7-bis(4-pentylphenoxy)-1,3-benzodithiol-2-ylidene]-4,7- bis(4-pentylphenoxy)-1,3-benzodithiole-5,6-diamine (2), is reported. The subsequent Schiff-base reactions of 2 afford large p-conjugated multiple donoracceptor (DA) arrays, for example, the triad 2-[4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxalin-2-ylidene]-4,9 -bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxaline (8) and the corresponding tetrabenz[bc,ef,hi,uv]ovalene-fused pentad 1, in good yields and high purity. The novel redox-active nanographene 1 is so far the largest known TTF-functionalized polycyclic aromatic hydrocarbon (PAH) with a well-resolved 1H NMR spectrum. The electrochemically highly amphoteric pentad 1 and triad 8 exhibit various electronically excited charge-transfer states in different oxidation states, thus leading to intense optical intramolecular charge-transfer (ICT) absorbances over a wide spectral range. The chemical and electrochemical oxidations of 1 result in an unprecedented TTF+ radical cation dimerization, thereby leading to the formation of [1+]2 at room temperature in solution due to the stabilizing effect, which arises from strong pp interactions. Moreover, ICT fluorescence is observed with large solvent-dependent Stokes shifts and quantum efficiencies of 0.05 for 1 and 0.035 for 8 in dichloromethane.