877 resultados para document clustering
Resumo:
Estudi, disseny i implementació de diferents tècniques d’agrupament defibres (clustering) per tal d’integrar a la plataforma DTIWeb diferentsalgorismes de clustering i tècniques de visualització de clústers de fibres de forma quefaciliti la interpretació de dades de DTI als especialistes
Resumo:
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
Resumo:
Abstract: To cluster textual sequence types (discourse types/modes) in French texts, K-means algorithm with high-dimensional embeddings and fuzzy clustering algorithm were applied on clauses whose POS (part-ofspeech) n-gram profiles were previously extracted. Uni-, bi- and trigrams were used on four 19th century French short stories by Maupassant. For high-dimensional embeddings, power transformations on the chi-squared distances between clauses were explored. Preliminary results show that highdimensional embeddings improve the quality of clustering, contrasting the use of bi and trigrams whose performance is disappointing, possibly because of feature space sparsity.
Resumo:
AIMS/HYPOTHESIS: The metabolic syndrome comprises a clustering of cardiovascular risk factors but the underlying mechanism is not known. Mice with targeted disruption of endothelial nitric oxide synthase (eNOS) are hypertensive and insulin resistant. We wondered, whether eNOS deficiency in mice is associated with a phenotype mimicking the human metabolic syndrome. METHODS AND RESULTS: In addition to arterial pressure and insulin sensitivity (euglycaemic hyperinsulinaemic clamp), we measured the plasma concentration of leptin, insulin, cholesterol, triglycerides, free fatty acids, fibrinogen and uric acid in 10 to 12 week old eNOS-/- and wild type mice. We also assessed glucose tolerance under basal conditions and following a metabolic stress with a high fat diet. As expected eNOS-/- mice were hypertensive and insulin resistant, as evidenced by fasting hyperinsulinaemia and a roughly 30 percent lower steady state glucose infusion rate during the clamp. eNOS-/- mice had a 1.5 to 2-fold elevation of the cholesterol, triglyceride and free fatty acid plasma concentration. Even though body weight was comparable, the leptin plasma level was 30% higher in eNOS-/- than in wild type mice. Finally, uric acid and fibrinogen were elevated in the eNOS-/- mice. Whereas under basal conditions, glucose tolerance was comparable in knock out and control mice, on a high fat diet, knock out mice became significantly more glucose intolerant than control mice. CONCLUSIONS: A single gene defect, eNOS deficiency, causes a clustering of cardiovascular risk factors in young mice. We speculate that defective nitric oxide synthesis could trigger many of the abnormalities making up the metabolic syndrome in humans.
Resumo:
BACKGROUND: Little is known about engagement in multiple health behaviours in childhood cancer survivors. METHODS: Using latent class analysis, we identified health behaviour patterns in 835 adult survivors of childhood cancer (age 20-35 years) and 1670 age- and sex-matched controls from the general population. Behaviour groups were determined from replies to questions on smoking, drinking, cannabis use, sporting activities, diet, sun protection and skin examination. RESULTS: The model identified four health behaviour patterns: 'risk-avoidance', with a generally healthy behaviour; 'moderate drinking', with higher levels of sporting activities, but moderate alcohol-consumption; 'risk-taking', engaging in several risk behaviours; and 'smoking', smoking but not drinking. Similar proportions of survivors and controls fell into the 'risk-avoiding' (42% vs 44%) and the 'risk-taking' cluster (14% vs 12%), but more survivors were in the 'moderate drinking' (39% vs 28%) and fewer in the 'smoking' cluster (5% vs 16%). Determinants of health behaviour clusters were gender, migration background, income and therapy. CONCLUSION: A comparable proportion of childhood cancer survivors as in the general population engage in multiple health-compromising behaviours. Because of increased vulnerability of survivors, multiple risk behaviours should be addressed in targeted health interventions.
Resumo:
The coverage and volume of geo-referenced datasets are extensive and incessantly¦growing. The systematic capture of geo-referenced information generates large volumes¦of spatio-temporal data to be analyzed. Clustering and visualization play a key¦role in the exploratory data analysis and the extraction of knowledge embedded in¦these data. However, new challenges in visualization and clustering are posed when¦dealing with the special characteristics of this data. For instance, its complex structures,¦large quantity of samples, variables involved in a temporal context, high dimensionality¦and large variability in cluster shapes.¦The central aim of my thesis is to propose new algorithms and methodologies for¦clustering and visualization, in order to assist the knowledge extraction from spatiotemporal¦geo-referenced data, thus improving making decision processes.¦I present two original algorithms, one for clustering: the Fuzzy Growing Hierarchical¦Self-Organizing Networks (FGHSON), and the second for exploratory visual data analysis:¦the Tree-structured Self-organizing Maps Component Planes. In addition, I present¦methodologies that combined with FGHSON and the Tree-structured SOM Component¦Planes allow the integration of space and time seamlessly and simultaneously in¦order to extract knowledge embedded in a temporal context.¦The originality of the FGHSON lies in its capability to reflect the underlying structure¦of a dataset in a hierarchical fuzzy way. A hierarchical fuzzy representation of¦clusters is crucial when data include complex structures with large variability of cluster¦shapes, variances, densities and number of clusters. The most important characteristics¦of the FGHSON include: (1) It does not require an a-priori setup of the number¦of clusters. (2) The algorithm executes several self-organizing processes in parallel.¦Hence, when dealing with large datasets the processes can be distributed reducing the¦computational cost. (3) Only three parameters are necessary to set up the algorithm.¦In the case of the Tree-structured SOM Component Planes, the novelty of this algorithm¦lies in its ability to create a structure that allows the visual exploratory data analysis¦of large high-dimensional datasets. This algorithm creates a hierarchical structure¦of Self-Organizing Map Component Planes, arranging similar variables' projections in¦the same branches of the tree. Hence, similarities on variables' behavior can be easily¦detected (e.g. local correlations, maximal and minimal values and outliers).¦Both FGHSON and the Tree-structured SOM Component Planes were applied in¦several agroecological problems proving to be very efficient in the exploratory analysis¦and clustering of spatio-temporal datasets.¦In this thesis I also tested three soft competitive learning algorithms. Two of them¦well-known non supervised soft competitive algorithms, namely the Self-Organizing¦Maps (SOMs) and the Growing Hierarchical Self-Organizing Maps (GHSOMs); and the¦third was our original contribution, the FGHSON. Although the algorithms presented¦here have been used in several areas, to my knowledge there is not any work applying¦and comparing the performance of those techniques when dealing with spatiotemporal¦geospatial data, as it is presented in this thesis.¦I propose original methodologies to explore spatio-temporal geo-referenced datasets¦through time. Our approach uses time windows to capture temporal similarities and¦variations by using the FGHSON clustering algorithm. The developed methodologies¦are used in two case studies. In the first, the objective was to find similar agroecozones¦through time and in the second one it was to find similar environmental patterns¦shifted in time.¦Several results presented in this thesis have led to new contributions to agroecological¦knowledge, for instance, in sugar cane, and blackberry production.¦Finally, in the framework of this thesis we developed several software tools: (1)¦a Matlab toolbox that implements the FGHSON algorithm, and (2) a program called¦BIS (Bio-inspired Identification of Similar agroecozones) an interactive graphical user¦interface tool which integrates the FGHSON algorithm with Google Earth in order to¦show zones with similar agroecological characteristics.
Resumo:
MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.
Resumo:
Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to α(V)β(3) integrin in trans eliciting responses in astrocytes. Nonetheless, whether α(V)β(3) integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of α(V)β(3) integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous α(V)β(3) integrin restricted neurite outgrowth. Likewise, α(V)β(3)-Fc was sufficient to suppress neurite extension in Thy-1(+), but not in Thy-1(-) CAD cells. In differentiating primary neurons exposed to α(V)β(3)-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC). Moreover, α(V)β(3)-Fc also induced retraction of already extended Thy-1(+)-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by α(V)β(3) integrin. Binding of α(V)β(3)-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, α(V)β(3)-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that α(V)β(3) integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage.
Resumo:
General clustering deals with weighted objects and fuzzy memberships. We investigate the group- or object-aggregation-invariance properties possessed by the relevant functionals (effective number of groups or objects, centroids, dispersion, mutual object-group information, etc.). The classical squared Euclidean case can be generalized to non-Euclidean distances, as well as to non-linear transformations of the memberships, yielding the c-means clustering algorithm as well as two presumably new procedures, the convex and pairwise convex clustering. Cluster stability and aggregation-invariance of the optimal memberships associated to the various clustering schemes are examined as well.
Resumo:
Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms have been compared (k-means and fuzzy c-means) using the grape yield data corresponding to three successive years (2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose. However, the fuzzy c-means algorithm allows for a better zoning of the parcel, forming more compact areas and with more equilibrated zonal differences over time.
Resumo:
Estudi, disseny i implementació de diferents tècniques d’agrupament de fibres (clustering) per tal d’integrar a la plataforma DTIWeb diferents algorismes de clustering i tècniques de visualització de clústers de fibres de forma que faciliti la interpretació de dades de DTI als especialistes
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process