875 resultados para document clustering
Resumo:
Nos últimos anos temos vindo a assistir a uma mudança na forma como a informação é disponibilizada online. O surgimento da web para todos possibilitou a fácil edição, disponibilização e partilha da informação gerando um considerável aumento da mesma. Rapidamente surgiram sistemas que permitem a coleção e partilha dessa informação, que para além de possibilitarem a coleção dos recursos também permitem que os utilizadores a descrevam utilizando tags ou comentários. A organização automática dessa informação é um dos maiores desafios no contexto da web atual. Apesar de existirem vários algoritmos de clustering, o compromisso entre a eficácia (formação de grupos que fazem sentido) e a eficiência (execução em tempo aceitável) é difícil de encontrar. Neste sentido, esta investigação tem por problemática aferir se um sistema de agrupamento automático de documentos, melhora a sua eficácia quando se integra um sistema de classificação social. Analisámos e discutimos dois métodos baseados no algoritmo k-means para o clustering de documentos e que possibilitam a integração do tagging social nesse processo. O primeiro permite a integração das tags diretamente no Vector Space Model e o segundo propõe a integração das tags para a seleção das sementes iniciais. O primeiro método permite que as tags sejam pesadas em função da sua ocorrência no documento através do parâmetro Social Slider. Este método foi criado tendo por base um modelo de predição que sugere que, quando se utiliza a similaridade dos cossenos, documentos que partilham tags ficam mais próximos enquanto que, no caso de não partilharem, ficam mais distantes. O segundo método deu origem a um algoritmo que denominamos k-C. Este para além de permitir a seleção inicial das sementes através de uma rede de tags também altera a forma como os novos centróides em cada iteração são calculados. A alteração ao cálculo dos centróides teve em consideração uma reflexão sobre a utilização da distância euclidiana e similaridade dos cossenos no algoritmo de clustering k-means. No contexto da avaliação dos algoritmos foram propostos dois algoritmos, o algoritmo da “Ground truth automática” e o algoritmo MCI. O primeiro permite a deteção da estrutura dos dados, caso seja desconhecida, e o segundo é uma medida de avaliação interna baseada na similaridade dos cossenos entre o documento mais próximo de cada documento. A análise de resultados preliminares sugere que a utilização do primeiro método de integração das tags no VSM tem mais impacto no algoritmo k-means do que no algoritmo k-C. Além disso, os resultados obtidos evidenciam que não existe correlação entre a escolha do parâmetro SS e a qualidade dos clusters. Neste sentido, os restantes testes foram conduzidos utilizando apenas o algoritmo k-C (sem integração de tags no VSM), sendo que os resultados obtidos indicam que a utilização deste algoritmo tende a gerar clusters mais eficazes.
Resumo:
XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main modules for (i) discovering the structural commonalities between sub-trees, (ii) identifying sub-tree semantic resemblances, (iii) computing tree-based edit operations costs, and (iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance.
Resumo:
Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.
Resumo:
With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.
Resumo:
Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.
Resumo:
QUT Library continues to rethink research support with eResearch as a primary driver. The support to the development of the Lens, an open global cyberinfrastructure, has been especially important in the light of technology transfer promotion, and partly in the response to researchers’ needs in following the innovation landscapes not only within the scientific but also patent literature. The Lens http://www.lens.org/lens/ project makes innovation more efficient, fair, transparent and inclusive. It is a joint effort between Cambia http://www.cambia.org.au and Queensland University of Technology (QUT). The Lens serves more than 84 million patent documents in the world as open, annotatable digital public goods that are integrated with scholarly and technical literature along with regulatory and business data. Users can link from search results to visualization and document clusters; from a patent document description to its full-text; from there, if applicable, the sequence data can also be found. Figure 1 shows a BLAST Alignment (DNA) using the Lens. A unique feature of the Lens is the ability to embed search and BLAST results into blogs and websites, and provide real-time updates to them. PatSeq Explorer http://www.lens.org/lens/bio/patseqexplorer allows users to navigate patent sequences that map onto the human genome and in the future, many other genomes. PatSeq Explorer offers three level views for the sequence information and links each group of sequences at the chromosomal level to their corresponding patent documents in the Lens. By integrating sequence and patent search and document clustering capabilities, users can now understand the big and small details on the true extent and scope of genetic sequence patents. QUT Library supported Cambia in developing, testing and promoting the Lens. This poster demonstrates QUT Library’s provision of best practice and holistic research support to a research group and how QUT Librarians have acquired new capabilities to meet the needs of the researchers beyond traditional research support practices.
Resumo:
This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.
Resumo:
In this paper, we present a methodology for identifying best features from a large feature space. In high dimensional feature space nearest neighbor search is meaningless. In this feature space we see quality and performance issue with nearest neighbor search. Many data mining algorithms use nearest neighbor search. So instead of doing nearest neighbor search using all the features we need to select relevant features. We propose feature selection using Non-negative Matrix Factorization(NMF) and its application to nearest neighbor search. Recent clustering algorithm based on Locally Consistent Concept Factorization(LCCF) shows better quality of document clustering by using local geometrical and discriminating structure of the data. By using our feature selection method we have shown further improvement of performance in the clustering.
Resumo:
文本聚类在信息过滤,网页分类中有着很好的应用。但它面临数据量大,特征维度高的难点。由于K平均算法易于实现,对数据依赖度底,在文本聚类中得到应用。然而,传统K平均以及它的变种会产生有较大波动的聚类结果。因此对K平均算法进行了改进,通过优化聚类初始中心的选择,得到一种适合对文本数据聚类分析的改进算法。大量实验显示,该算法可以生成质量较高而且聚类质量波动性较小的结果。
Resumo:
The structure and infrastructure of the Mexican technical literature was determined. A representative database of technical articles was extracted from the Science Citation Index for the year 2002, with each article containing at least one author with a Mexican address. Many different manual and statistical clustering methods were used to identify the structure of the technical literature (especially the science and technology core competencies). One of the pervasive technical topics identified from the clustering, thin films research, was analyzed further using bibliometrics, in order to identify the infrastructure of this technology. Published by Elsevier Inc.
Resumo:
In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.
Resumo:
Due to the rapid advances in computing and sensing technologies, enormous amounts of data are being generated everyday in various applications. The integration of data mining and data visualization has been widely used to analyze these massive and complex data sets to discover hidden patterns. For both data mining and visualization to be effective, it is important to include the visualization techniques in the mining process and to generate the discovered patterns for a more comprehensive visual view. In this dissertation, four related problems: dimensionality reduction for visualizing high dimensional datasets, visualization-based clustering evaluation, interactive document mining, and multiple clusterings exploration are studied to explore the integration of data mining and data visualization. In particular, we 1) propose an efficient feature selection method (reliefF + mRMR) for preprocessing high dimensional datasets; 2) present DClusterE to integrate cluster validation with user interaction and provide rich visualization tools for users to examine document clustering results from multiple perspectives; 3) design two interactive document summarization systems to involve users efforts and generate customized summaries from 2D sentence layouts; and 4) propose a new framework which organizes the different input clusterings into a hierarchical tree structure and allows for interactive exploration of multiple clustering solutions.
Resumo:
Clusters of text documents output by clustering algorithms are often hard to interpret. We describe motivating real-world scenarios that necessitate reconfigurability and high interpretability of clusters and outline the problem of generating clusterings with interpretable and reconfigurable cluster models. We develop two clustering algorithms toward the outlined goal of building interpretable and reconfigurable cluster models. They generate clusters with associated rules that are composed of conditions on word occurrences or nonoccurrences. The proposed approaches vary in the complexity of the format of the rules; RGC employs disjunctions and conjunctions in rule generation whereas RGC-D rules are simple disjunctions of conditions signifying presence of various words. In both the cases, each cluster is comprised of precisely the set of documents that satisfy the corresponding rule. Rules of the latter kind are easy to interpret, whereas the former leads to more accurate clustering. We show that our approaches outperform the unsupervised decision tree approach for rule-generating clustering and also an approach we provide for generating interpretable models for general clusterings, both by significant margins. We empirically show that the purity and f-measure losses to achieve interpretability can be as little as 3 and 5%, respectively using the algorithms presented herein.