965 resultados para dipolar Bose-Einstein condensate
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the statics and dynamics of a dipolar Bose-Einstein condensate (BEC) droplet bound by interspecies contact interaction in a trapped nondipolar BEC. Our findings are demonstrated in terms of stability plots of a dipolar 164Dy droplet bound in a trapped nondipolar 87Rb BEC with a variable number of 164Dy atoms and interspecies scattering length. A trapped nondipolar BEC of a fixed number of atoms can bind only a dipolar droplet containing fewer atoms than a critical number for the interspecies scattering length between two critical values. The shape and size (statics) as well as the small breathing oscillation (dynamics) of the dipolar BEC droplet are studied using numerical and variational solutions of a mean-field model. We also suggest an experimental procedure for achieving such a 164Dy droplet by relaxing the trap on the 164Dy BEC in a trapped binary 87Rb-164Dy mixture. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the merging and splitting of quasi-two-dimensional Bose-Einstein condensates with strong dipolar interactions. We observe that if the dipoles have a non-zero component in the plane of the condensate, the dynamics of merging or splitting along two orthogonal directions, parallel and perpendicular to the projection of dipoles on the plane of the condensate, are different. The anisotropic merging and splitting of the condensate is a manifestation of the anisotropy of the roton-like mode in the dipolar system. The difference in dynamics disappears if the dipoles are oriented at right angles to the plane of the condensate as in this case the Bogoliubov dispersion, despite having roton-like features, is isotropic.
Resumo:
We theoretically explore the annihilation of vortex dipoles, generated when an obstacle moves through an oblate Bose-Einstein condensate, and examine the energetics of the annihilation event. We show that the grey soliton, which results from the vortex dipole annihilation, is lower in energy than the vortex dipole. We also investigate the annihilation events numerically and observe that annihilation occurs only when the vortex dipole overtakes the obstacle and comes closer than the coherence length. Furthermore, we find that noise reduces the probability of annihilation events. This may explain the lack of annihilation events in experimental realizations.
Resumo:
We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.
Resumo:
A second-harmonic generation (SHG) is predicted for the Bogoliubov excitations in a two-component Bose-Einstein condensate. It is shown that, because the linear dispersion curve of the excitations displays two branches, the phase-matching condition for the SHG can be fulfilled if the wave vectors and frequencies of fundamental and second-harmonic waves are selected suitably from different branches. The nonlinearly coupled envelope equations for the SHG are derived by using a method of multiple scales. The explicit solutions of these envelope equations are provided and the conversion efficiency of the SHG is also discussed.
Resumo:
The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN > 4E(J) is presented.
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.
Resumo:
We show that an electrostatic qubit located near a Bose-Einstein condensate trapped in a symmetric double-well potential can be used to measure the duration the qubit has spent in one of its quantum states. The strong, medium, and weak measurement regimes are analyzed. The analogy between the residence and the traversal (tunnelling) times is highlighted.
Resumo:
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubit's density matrix. The qubit's evolution exhibits a slow (proportional to 1/root t) damping of the qubit's coherence term, which however turns to be a Gaussian one in the case of static qubit. This is in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.