996 resultados para dental air abrasion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to assess the influence of cleaning pits and fissures with on aluminum oxide air abrasion system on the detection of occlusal caries in primary teeth using laser fluorescence (LF) and visual examination. Methods. The sample comprised 65 pit and fissure sites on extracted primary teeth suspected to be carious. The sites were submitted to 2 visual examinations (examiner JAR) and 2 LF readings (examiner TMV). Next, the occlusal surfaces were air-abraded and re-examined thereafter using both methods. The teeth were sectioned, and the histological analysis of the sites with a stereoscopic magnifying lens at X32 magnification was used as the gold standard Results. Cohen's kappa statistic for LF and visual examination were, respectively, 0.282/0.884 before and 0.896/0.905 after air abrasion. LF showed a sensitivity of 0.28 increasing to 0.49 and 0 specificity of 0.50 increasing to 0.92. Visual examination showed sensitivity of 0.78 and specificity of 0.73. Both increased after air abrasion. Conclusion: The findings suggest that cleaning pits and fissures with aluminum oxide air abrasion increased the accuracy of LF and visual examination for detection of occlusal caries in primary teeth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: the aim of this in vitro study was to assess the effect of tip diameter, nozzle distance, and application time of an air-abrasion system for cavity preparation on the enamel of primary teeth. Method and materials: Forty exfoliated primary teeth were air abraded with a microabrasion machine used with a handpiece with an 80-degree-angle nozzle, 50-mum abrasive particle size, and 80-psi air pressure. The effects of 0.38- or 0.48-mm inner tip diameter, 2- or 5-mm distance from tip to tooth surface, and 15 or 30 seconds of application time on cutting efficiency were evaluated. Cutting width and depth were analyzed and measured from scanning electron micrographs. Results: Statistical analysis revealed that the width of the cuts was significantly greater when the tip distance was increased. Significantly deeper cavities were produced by a tip with a 0.48-mm inner diameter. The application time did not influence the cuts. Conclusion: the cutting patterns found in this study suggest that precise removal of enamel in primary teeth is best accomplished when a tip with a 0.38-mm inner diameter is used at a 2-mm distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose : the aim of this study was to evaluate the effect of nozzle angle and tip diameter on the cutting efficiency of an air abrasion system. Materials and Methods: Thirty-six extracted human third molars were air-abraded with the PrepStar microabrasion machine using a handpiece with either 80degrees or 45degrees nozzle angles with 0.38 or 0.48 nun tip orifice diameters. The following parameters were held constant: abrasive particle size (27 mum), air pressure (80 psi), distance (2 mm.) and duration (15 seconds). The cutting efficiency was compared using enamel, dentin and cementum substrates. Width and depth of the cutting patterns were analyzed and measured using scanning electron micrographs. Results: Statistical analysis using three-way ANOVA and Duncan's Multiple Range test revealed that the width of the cuts was significantly greater when the cavities were prepared using the 45degrees nozzle angle. Significantly deeper cavities were produced with the 80degrees nozzle angle. The tip orifice of the nozzle influenced the cutting efficiency in softer substrates, dentin and cementum. Precise removal of hard tissue is best accomplished using the 80degrees angle nozzle tips for all types of tooth surfaces, enamel, dentin and cementum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this in vitro study was to evaluate the effect of air-abrasion/zirconia sintering order on the yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) surface characterization (roughness, morphology, and phase transformation), flexural strength (FS), and shear bond strength (SBS) to a resin cement. Y-TZP specimens were air abraded with 50-μm Al2O3 particles after (AS), before (BS), or before and after zirconia sintering (BAS). For roughness (Ra), 30 block specimens (12×12×3.0 mm; n=10) had their surfaces analyzed by a profilometer. Next, on the air-abraded surfaces of these specimens, composite resin discs (n=30) were bonded with RelyX ARC. The bonded specimens were stored for 24 hours in distilled water at 37°C before shear testing. Failure mode was determined with a stereomicroscope (20×). The surface morphology (n=2) was evaluated by SEM (500×). For the four-point flexural strength test (EMIC DL2000), 39 bar-shaped specimens (20×4.0×1.2 mm; n=13) were air abraded according to the three conditions proposed, and an additional group (nonabraded) was evaluated (n=13). The quantitative analysis of phase transformation (n=1) was completed with Rietveld refinement with X-ray diffraction data. Ra (μm) and SBS (MPa) data were analyzed by one-way analysis of variance (ANOVA) and the Tukey test (α=0.05). Pearson correlation analysis was used to determine if there was a correlation between roughness and SBS. For FS (MPa) data, one-way ANOVA and the Dunnett C-test (α=0.05) were used. The air-abrasion/zirconia sintering order influenced significantly (p<0.001) Ra, SBS, and FS. The BS and AS groups presented the highest (1.3 μm) and the lowest (0.7 μm) Ra. The highest SBS (7.0 MPa) was exhibited by the BAS group, followed by the AS group (5.4 MPa) and finally by the BS group (2.6 MPa). All groups presented 100% adhesive failure. A weak correlation (r=−0.45, p<0.05) was found between roughness and SBS. The air-abrasion/zirconia sintering order provided differences in the surface morphology. The nonabraded (926.8 MPa) and BS (816.3 MPa) groups exhibited statistically similar FS values but lower values than the AS (1249.1 MPa) and BAS (1181.4 MPa) groups, with no significant difference between them. The nonabraded, AS, BS, and BAS groups exhibited, respectively, percentages of monoclinic phase of 0.0 wt%, 12.2 wt%, 0.0 wt%, and 8.6 wt%. The rougher surface provided by the air-abrasion before zirconia sintering may have impaired the bonding with the resin cement. The morphological patterns were consistent with the surface roughness. Considering the short-term SBS and FS, the BAS group exhibited the best performance. Air abrasion, regardless of its performance order, provides tetragonal to monoclinic transformation, while sintering tends to zero the monoclinic phase content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo do estudo foi avaliar a deposição de óxido de alumínio no campo operatório do cirurgião-dentista durante a utilização do sistema de abrasão a ar em consultório odontológico, bem como a efetividade da sucção de alta potência na captação desse pó. Por meio de um dispositivo para a coleta das partículas nos locais correspondentes às posições e distâncias de trabalho do profissional, dentes artificiais foram abrasionados. O sistema de sucção empregado para aspiração das partículas foi o de alta potência com sugador de saliva convencional e sugador com abertura ampliada por funil. A mensuração das partículas foi determinada pela quantidade em massa de óxido de alumínio depositada em placas de Petri. Os resultados obtidos por meio de estatística descritiva gráfica revelaram que a maior quantidade de pó se encontrava a 20 cm do operador e na posição de trabalho 9h, quando foi utilizado o sugador de saliva convencional. Uma vez comprovado que a sucção não é totalmente eficiente na aspiração do pó de óxido de alumínio, reforça-se a importância da proteção individual apropriada para o emprego seguro do sistema de abrasão a ar para pacientes e, principalmente, para os profissionais que trabalham com este tipo de tecnologia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the use of air abrasion has grown in pediatric dentistry, the aim of this study was to evaluate, by means of shear bond strength testing, the need to use the total etching technique or self-etching primers on dentin of primary teeth after air abrasion. Twenty-five exfoliated primary molars had their occlusal dentin exposed by trimming and polishing. Specimens were treated by: Air abrasion + Scotchbond MultiPurpose adhesive (G1); 37% phosphoric acid + Scotchbond MP adhesive (G2); Clearfil SE (G3); Air abrasion ( 37% phosphoric acid + Scotchbond MP adhesive (G4); Air abrasion + Clearfil SE (G5). On the treated surface, a cylinder of 2 mm by 6 mm was made using a composite resin (Z100). Duncan's test showed that: (G2 = G3 = G5) > (G1 = G4). The use of a selfetching primer on air abraded dentin is recommended to obtain higher bond strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence of surface treatment on the shear bond strength of a composite resin (CR), previously submitted to the application of a temporary cement (TC), to an adhesive luting cement. Eight-four CR cylinders (5 mm diameter and 3 mm high) were fabricated and embedded in acrylic resin. The sets were divided into 6 groups (G1 to G6) (n=12). Groups 2 to 6 received a coat of TC. After 24 h, TC was removed and the CR surfaces received the following treatments: G2: ethanol; G3: rotary brush and pumice; G4: air-abrasion; G5: air-abrasion and adhesive system; G6: air-abrasion, acid etching and adhesive system. G1 (control) did not receive TC or any surface treatment. The sets were adapted to a matrix and received an increment of an adhesive luting cement. The specimens were subjected to the shear bond strength test. ANOVA and Tukey's tests showed that G3 (8.53 MPa) and G4 (8.63 MPa) differed significantly (p=0.001) from G1 (13.34 MPa). The highest mean shear bond strength values were found in G5 (14.78 MPa) and G6 (15.86 MPa). Air-abrasion of CR surface associated with an adhesive system provided an effective bond of the CR to the adhesive luting cement, regardless the pre-treatment with the phosphoric acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated 3 implant surfaces in a dog model: (1) resorbable-blasting media + acid-etched (RBMa), alumina-blasting + acid-etching (AB/AE), and AB/AE + RBMa (hybrid). All of the surfaces were minimally rough, and Ca and P were present for the RBMa and hybrid surfaces. Following 2 weeks in vivo, no significant differences were observed for torque, bone-to-implant contact, and bone-area fraction occupied measurements. Newly formed woven bone was observed in proximity with all surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.