934 resultados para dc conductivity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dielectric constant, epsilon', and the dielectric loss, epsilon'', for gelatin films were measured in the glassy and rubbery states over a frequency range from 20 Hz to 10 MHz; epsilon' and epsilon'' were transformed into M* formalism (M* = 1/(epsilon' - i epsilon'') = M' + iM''; i, the imaginary unit). The peak of epsilon'' was masked probably due to dc conduction, but the peak of M'', e.g. the conductivity relaxation, for the gelatin used was observed. By fitting the M'' data to the Havriliak-Negami type equation, the relaxation time, tauHN, was evaluated. The value of the activation energy, Etau, evaluated from an Arrhenius plot of 1/tauHN, agreed well with that of Esigma evaluated from the DC conductivity sigma0 both in the glassy and rubbery states, indicating that the conductivity relaxation observed for the gelatin films was ascribed to ionic conduction. The value of the activation energy in the glassy state was larger than that in the rubbery state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relations between the rheological and electrical properties of NaY zeolite electrorheological fluid and its solid phase are studied. It is found that then exist complex relations between its electrical and theological properties. The temperature spectra of dielectric properties of the fluid under high AC electric field are strongly field strength dependent. The relation between the DC conductivity of the fluid and the exciting electric field is experimentally presented as log sigma =A+BE1/2, when A is a strong function, but B, a very weak function of temperature. The shear stress of the fluid under a fixed electric field and temperature decreases with shear rate. A relaxation time for the adsorbed charges is estimated to be about 0.3 to 6.6 s in the temperature range from 280 to 380 K. The relaxation time qualitatively corresponds to the shear rate at which the shear stress begins to drop. The time dependent leaking current of the ER fluids under DC electric field is also measured. The conductivity increase is mainly caused by the structure evolution of particles. The experimental results can he explained with the calculations of Davis (J. Appl. Phys. 81(1997) pp.1985-1991) and Martin (J. Chem. Phys. 110(1999) pp.4854-4866). It is predicted that the NaY zeolite ER fluid strength would get degraded slowly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the dielectric dispersion of water, specially in the low-frequency range, by using the impedance spectroscopy technique. The frequency dependencies of the real R and imaginary Z parts of the impedance Could not be explained by means of the Usual description of the dielectric properties of the water as all insulating liquid containing ions. This is due to the incomplete knowledge of the parameters entering in the fundamental equations describing the evolution of the system, and oil the mechanisms regulating the exchange of charge of the cell with the external circuit. We propose a simple description of our experimental data based on the model of Debye, by invoking a dc conductivity of the cell, related to the nonblocking character of the electrodes. A discussion on the electric Circuits able to simulate the cell under investigation, based oil bulk and Surface elements, is also reported. We find that the simple circuit formed by a series of two parallels of resistance and capacitance is able to reproduce the experimental data concerning the real and imaginary part of the electrical impedance of the cell for frequency larger than 1 Hz. According to this description, one of the parallels takes into account the electrical properties of interface between the electrode and water, and the other of the bulk. For frequency lower than 1 Hz, a good agreement with the experimental data is obtained by simulating the electrical properties of the interface by means of the constant phase element.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycrystalline La3/2Bi3/2Fe5O12 (LBIO) compound was prepared by a high-temperature solid-state reaction technique. The complex impedance of LBIO was measured over a wide temperature (i.e., room temperature to 500 C) and frequencies (i.e., 10(2)-10(6) Hz) ranges. This study takes advantage of plotting ac data simultaneously in the form of impedance and modulus spectroscopic plots and obey non-Debye type of relaxation process. The Nyquist's plot showed the presence of grain effects in the material at high temperature. The ac conductivity spectrum was found to obey Jonscher's universal power law. The dc conductivity was found to increase with rise in temperature. The activation energy of the compound was found to be 0.24 and 0.51 eV in the low and high-temperature region, respectively, for conduction process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress-strain test. The electrical conductivity varied between 10(-9) and 10 S m(-1), depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. (C) 2007 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite Langmuir-Blodgett (LB) films from polyaniline and cadmium stearate have been irradiated with ionizing X-rays for various exposure times. In the initial stages of X-ray irradiation the absorption peak at 580 nm of an as-deposited film was seen to decrease with a concomitant increase in the absorption in the long wavelength region (700-1100 nm). Upon prolonging the irradiation, the absorption maximum shifted to 800 nm with the LB film color changing to green, characteristic of acid doped polyaniline. The changes in the Fourier transform infrared (FTIR) spectra upon irradiation are also similar to those observed upon acid doping of polyaniline. When compared with acid doping, two major differences were observed for the LB films exposed to X-rays. First, the packing order of the cadmium stearate domains in the composite LB films - as observed by X-ray diffraction - is not affected by the X-ray irradiation. In addition, no significant increase in the DC conductivity was noted after the X-ray exposure whereas similar LB films have their conductivity increased by an order of magnitude upon acid doping. These differences may be explained by considering that the inter-domain contribution to the conductivity is increased by the acid doping because the insulating cadmium stearate domains are destroyed, which does not occur with the X-ray irradiation. (C) 1998 Elsevier B.V. S.A. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron-spin-resonance and dc conductivity data show a thermal-history-dependent transition at 240 K in pressed pellets of ClO4--doped poly(3-methylthiophene) (P3MT). We discuss the possibility of this transition to be a Peierls transition from a room-temperature-metallic to a charge-density-wave state driven by anions ordering at this temperature. Below 100 K, dc conductivity shows a change from linear to exponential decay. Nonlinear conductivity has also been observed in this system for very low electric fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the transport properties of the charge-density-wave system Fe3O2BO3. ac conductivity measurements for different frequencies are presented for temperatures above and below the structural transition. dc conductivity, as a function of temperature and pressure, yields the variation of the transition temperature with external pressure. Below this transition the conductivity is thermally activated in a wide range of temperature and the gap obtained is strongly pressure dependent. The ac conductivity at sufficiently low temperatures below the transition is ascribed to the excitation of local defects associated with domain walls and which are characteristic of the one-dimensional nature of the Fe3O2BO3 system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)