1000 resultados para damage depth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In experiments, we have found an abnormal relationship between probability of laser induced damage and number density of surface inclusion. From results of X-ray diffraction (XRD) and laser induced damage, we have drawn a conclusion that bulk inclusion plays a key role in damage process. Combining thermo-mechanical damage process and statistics of inclusion density distribution, we have deduced an equation which reflects the relationship between probability of laser induced damage, number density of inclusion, power density of laser pulse, and thickness of films. This model reveals that relationship between critical sizes of the dangerous inclusions (dangerous inclusions refer to the inclusions which can initialize film damage), embedded depth of inclusions, thermal diffusion length and tensile strength of films. This model develops the former work which is the statistics about surface inclusion. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid glass-carbon 2D braided composites with varying carbon contents are impacted using a gas gun by impactors of masses 12.5 and 44.5. g, at impact energies up to 50. J. The damage area detected by ultrasound C-scan is found to increase roughly linearly with impact energy, and is larger for the lighter impactor at the same impact energy. The area of whitening of the glass tows on the distal side corresponds with the measured C-scan damage area. X-ray imaging shows more intense damage, at the same impact energy, for a higher-mass impactor. Braids with more glass content have a modest increase in density, decrease in modulus, and reduction in the C-scan area and dent depth at the impact site, particularly at the higher impact energies. Impact damage is found to reduce significantly the compressive strength, giving up to a 26% reduction at the maximum impact energy. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2013 the Warsaw International Mechanism (WIM) for loss and damage (L&D) associated with climate change impacts was established under the United Nations Framework Convention on Climate Change (UNFCCC). For scientists, L&D raises ques- tions around the extent that such impacts can be attributed to anthropogenic climate change, which may generate complex results and be controversial in the policy arena. This is particularly true in the case of probabilistic event attribution (PEA) science, a new and rapidly evolving field that assesses whether changes in the probabilities of extreme events are attributable to GHG emissions. If the potential applications of PEA are to be considered responsibly, dialogue between scientists and policy makers is fundamental. Two key questions are considered here through a literature review and key stakeholder interviews with representatives from the science and policy sectors underpinning L&D. These provided the opportunity for in-depth insights into stakeholders’ views on firstly, how much is known and understood about PEA by those associated with the L&D debate? Secondly, how might PEA inform L&D and wider climate policy? Results show debate within the climate science community, and limited understanding among other stakeholders, around the sense in which extreme events can be attributed to climate change. However, stake- holders do identify and discuss potential uses for PEA in the WIM and wider policy, but it remains difficult to explore precise applications given the ambiguity surrounding L&D. This implies a need for stakeholders to develop greater understandings of alternative conceptions of L&D and the role of science, and also identify how PEA can best be used to support policy, and address associated challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective/Background: Traditionally, sclerotherapy has been thought to work by the cytotoxic effect of the sclerosant upon the endothelium alone. However, studies have shown that sclerotherapy is more successful in smaller veins than in larger veins. This could be explained by the penetration of the sclerosant, or its effect, into the media. This study aimed to investigate intimal and medial damage profiles after sclerosant treatment. Methods: Fresh human varicose veins were treated ex vivo with either 1% or 3% sodium tetradecyl sulphate (STS) for 1 or 10 minutes. The effect of the sclerosant on the vein wall was investigated by immunofluorescent labelling of transverse vein sections using markers for endothelium (CD31), smooth muscle (a-actin), apoptosis (p53) and inflammation (intercellular adhesion molecule-1 [ICAM-1]). Polidocanol (POL; 3%) treatment at 10 minutes was similarly investigated. Results: Endothelial cell death was concentration- and time-dependent for STS but incomplete for both sclerosants. Time, but not concentration, significantly affected cell death (p > .001). A 40% and 30% maximum reduction was observed for STS and POL, respectively. Destruction of 20e30% of smooth muscle cells was found up to 250 mm from the lumen after 3% STS treatment for 10 minutes. POL treatment for 10 minutes showed inferior destruction of medial cells. Following STS treatment and 24-hour tissue culture, p53 and ICAM-1 were upregulated to a depth of around 300 mm. This effect was not observed with POL. Conclusion: Inflammatory and apoptotic markers show the same distribution as medial cell death, implying that sclerotherapy with STS works by inducing apoptosis in the vein wall rather than having an effect restricted to the endothelium. Incomplete loss of endothelial cells and penetration of the sclerosant effect up to 250 mm into the media suggest that medial damage is crucial to the success of sclerotherapy and may explain why it is less effective in larger veins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of manufacturing process on the drop-weight impact damage in woven carbon/epoxy laminates was inspected by visual observation, dyepenetrant X-ray technique, and optical microscopy observation. The MTM56/ CF0300 woven quasi-isotropic laminates were fabricated by two processes: the autoclave and the Quickstep processes. QuickstepTM is a novel composite manufacturing process, which was designed for the out-of-autoclave production of high-quality composite parts at lower cost. It utilizes higher heat conduction of fluid other than gas to transfer heat to components, which results in much shorter cure cycles. The laminates cured by this fast heating process showed different impact failure modes from those cured by the conventional autoclave process. The residual indentation in the top side of the Quickstep-cured laminates had a bigger diameter, but a smaller depth at the same impact energy level. Dye-penetrant X-ray revealed more intense and connected impact damage regions in the autoclave-cured laminates. Optical micrography as a supplementary method showed less severe matrix damage in the quickstep-cured laminates indicating a more ductile property of the resin matrix cured at a faster heating rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic depth profiling using secondary ion mass spectrometry, SIMS, is common in the field micro-electronics; however, the generation of molecular information as a function of sample depth is difficult due to the accumulation of damage both on and beneath the sample surface. The introduction of polyatomic ion beams such as SF5 and C60 have raised the possibility of overcoming this problem as they deposit the majority of their energy in the upper surface of the sample resulting in increased sputter yields but with a complimentary reduction in sub-surface damage accumulation. In this paper we report the depth profile analysis of the bio-polymer polycaprolactone, PCL, using the polyatomic ions Au3+ and C60+ and the monoatomic Au+. Results are compared to recent analysis of a similar sample using . depth profiling of cellulose is also demonstrated, an experiment that has been reported as unsuccessful when attempted with implications for biological analysis are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C60 has been shown to give increased sputter yields and, hence, secondary ions when used as a primary particle in SIMS analysis. In addition, for many samples, there is also a reduction in damage accumulation following continued bombardment with the ion beam. In this paper, we report a study of the impact energy (up to 120 keV) of C60 on the secondary ion yield from a number of samples with consideration of any variation in yield response over mass ranges up to m/z 2000. Although increased impact energy is expected to produce a corresponding increase in sputter yield/rate, it is important to investigate any increase in sample damage with increasing energy and, hence, efficiency of the ion beams. On our test samples including a metal, along with organic samples, there is a general increase in secondary ion yield of high-mass species with increasing impact energy. A corresponding reduction in the formation of low-mass fragments is also observed. Depth profiling of organic samples demonstrates that when using C60, there does not appear to be any increase in damage evident in the mass spectra as the impact energy is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 µm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 µm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.