921 resultados para cross-language information retrieval


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to develop an Open Agent Architecture for Multilingual information retrieval from Relational Database. The query for information retrieval can be given in plain Hindi or Malayalam; two prominent regional languages of India. The system supports distributed processing of user requests through collaborating agents. Natural language processing techniques are used for meaning extraction from the plain query and information is given back to the user in his/ her native language. The system architecture is designed in a structured way so that it can be adapted to other regional languages of India

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Among Hispanics, the HPV vaccine has the potential to eliminate disparities in cervical cancer incidence and mortality but only if optimal rates of vaccination are achieved. Media can be an important information source for increasing HPV knowledge and awareness of the vaccine. Very little is known about how media use among Hispanics affects their HPV knowledge and vaccine awareness. Even less is known about what differences exist in media use and information processing among English- and Spanish-speaking Hispanics.^ Aims. Examine the relationships between three health communication variables (media exposure, HPV-specific information scanning and seeking) and three HPV outcomes (knowledge, vaccine awareness and initiation) among English- and Spanish-speaking Hispanics.^ Methods. Cross-sectional data from a survey administered to Hispanic mothers in Dallas, Texas was used for univariate and multivariate logistic regression analyses. Sample used for analysis included 288 mothers of females aged 8-22 recruited from clinics and community events. Dependent variables of interest were HPV knowledge, HPV vaccine awareness and initiation. Independent variables were media exposure, HPV-specific information scanning and seeking. Language was tested as an effect modifier on the relationship between health communication variables and HPV outcomes.^ Results. English-speaking mothers reported more media exposure, HPV-specific information scanning and seeking than Spanish-speakers. Scanning for HPV information was associated with more HPV knowledge (OR = 4.26, 95% CI = 2.41 - 7.51), vaccine awareness (OR = 10.01, 95% CI = 5.43 - 18.47) and vaccine initiation (OR = 2.54, 95% CI = 1.09 - 5.91). Seeking HPV-specific information was associated with more knowledge (OR = 2.27, 95% CI = 1.23 - 4.16), awareness (OR = 6.60, 95% CI = 2.74 - 15.91) and initiation (OR = 4.93, 95% CI = 2.64 - 9.20). Language moderated the effect of information scanning and seeking on vaccine awareness.^ Discussion. Differences in information scanning and seeking behaviors among Hispanic subgroups have the potential to lead to disparities in vaccine awareness.^ Conclusion. Findings from this study underscore health communication differences among Hispanics and emphasize the need to target Spanish language media as well as English language media aimed at Hispanics to improve knowledge and awareness.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ImageCLEF is a pilot experiment run at CLEF 2003 for cross language image retrieval using textual captions related to image contents. In this paper, we describe the participation of the MIRACLE research team (Multilingual Information RetrievAl at CLEF), detailing the different experiments and discussing their preliminary results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic Text Summarization has been shown to be useful for Natural Language Processing tasks such as Question Answering or Text Classification and other related fields of computer science such as Information Retrieval. Since Geographical Information Retrieval can be considered as an extension of the Information Retrieval field, the generation of summaries could be integrated into these systems by acting as an intermediate stage, with the purpose of reducing the document length. In this manner, the access time for information searching will be improved, while at the same time relevant documents will be also retrieved. Therefore, in this paper we propose the generation of two types of summaries (generic and geographical) applying several compression rates in order to evaluate their effectiveness in the Geographical Information Retrieval task. The evaluation has been carried out using GeoCLEF as evaluation framework and following an Information Retrieval perspective without considering the geo-reranking phase commonly used in these systems. Although single-document summarization has not performed well in general, the slight improvements obtained for some types of the proposed summaries, particularly for those based on geographical information, made us believe that the integration of Text Summarization with Geographical Information Retrieval may be beneficial, and consequently, the experimental set-up developed in this research work serves as a basis for further investigations in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes the scientific work presented at the 32nd European Conference on Information Retrieval. It demonstrates that information retrieval (IR) as a research area continues to thrive with progress being made in three complementary sub-fields, namely IR theory and formal methods together with indexing and query representation issues, furthermore Web IR as a primary application area and finally research into evaluation methods and metrics. It is the combination of these areas that gives IR its solid scientific foundations. The paper also illustrates that significant progress has been made in other areas of IR. The keynote speakers addressed three such subject fields, social search engines using personalization and recommendation technologies, the renewed interest in applying natural language processing to IR, and multimedia IR as another fast-growing area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an extended version of an article presented at the Second International Conference on Software, Services and Semantic Technologies, Sofia, Bulgaria, 11–12 September 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopo lo sviluppo dei primi casi di Covid-19 in Cina nell’autunno del 2019, ad inizio 2020 l’intero pianeta è precipitato in una pandemia globale che ha stravolto le nostre vite con conseguenze che non si vivevano dall’influenza spagnola. La grandissima quantità di paper scientifici in continua pubblicazione sul coronavirus e virus ad esso affini ha portato alla creazione di un unico dataset dinamico chiamato CORD19 e distribuito gratuitamente. Poter reperire informazioni utili in questa mole di dati ha ulteriormente acceso i riflettori sugli information retrieval systems, capaci di recuperare in maniera rapida ed efficace informazioni preziose rispetto a una domanda dell'utente detta query. Di particolare rilievo è stata la TREC-COVID Challenge, competizione per lo sviluppo di un sistema di IR addestrato e testato sul dataset CORD19. Il problema principale è dato dal fatto che la grande mole di documenti è totalmente non etichettata e risulta dunque impossibile addestrare modelli di reti neurali direttamente su di essi. Per aggirare il problema abbiamo messo a punto nuove soluzioni self-supervised, a cui abbiamo applicato lo stato dell'arte del deep metric learning e dell'NLP. Il deep metric learning, che sta avendo un enorme successo soprattuto nella computer vision, addestra il modello ad "avvicinare" tra loro immagini simili e "allontanare" immagini differenti. Dato che sia le immagini che il testo vengono rappresentati attraverso vettori di numeri reali (embeddings) si possano utilizzare le stesse tecniche per "avvicinare" tra loro elementi testuali pertinenti (e.g. una query e un paragrafo) e "allontanare" elementi non pertinenti. Abbiamo dunque addestrato un modello SciBERT con varie loss, che ad oggi rappresentano lo stato dell'arte del deep metric learning, in maniera completamente self-supervised direttamente e unicamente sul dataset CORD19, valutandolo poi sul set formale TREC-COVID attraverso un sistema di IR e ottenendo risultati interessanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation presented for obtaining the Master’s Degree in Electrical Engineering and Computer Science, at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: