953 resultados para critical properties
Resumo:
O comportamento de fases para sistemas binários com um hidrocarboneto leve e um pesado é muito importante tanto para o projeto real de um processo quanto para o desenvolvimento de modelos teóricos. Para atender a crescente demanda por informação experimental de equilíbrio de fases a altas pressões, o objetivo deste estudo é obter uma metodologia que substitua parcialmente ou maximize a pouca informação experimental disponível. Para isto propõe-se a modelagem do equilíbrio de fases em misturas de hidrocarboneto leve com um pesado, sem o conhecimento da estrutura molecular do pesado, inferindo-se os parâmetros do modelo a partir da modelagem de dados de ponto de bolha obtidos na literatura. Esta metodologia implica não só na descrição do equilíbrio de fases de um sistema como na estimação das propriedades críticas do pesado, de difícil obtenção devido ao craqueamento destes a altas temperaturas. Neste contexto, este estudo apresenta uma estratégia que estima indiretamente as propriedades críticas dos compostos pesados. Para isto, foram correlacionados dados experimentais de ponto de bolha de misturas binárias contendo um hidrocarboneto leve e um pesado, usando-se dois modelos: o de Peng-Robinson e o TPT1M (Teoria da Polimerização Termodinâmica de primeira ordem de Wertheim modificada). Os parâmetros ajustados com o modelo de Peng-Robinson correspondem diretamente às propriedades críticas do composto pesado, enquanto os ajustados com o modelo TPT1M foram usados para obtê-las. Esta estratégia fornece parâmetros dependentes do modelo, porém permite o cálculo de outras propriedades termodinâmicas, como a extrapolação da temperatura dos dados estudados. Além disso, acredita-se que a correlação dos parâmetros obtidos com as propriedades críticas disponíveis ajudará na caracterização de frações pesadas de composição desconhecida
Resumo:
GaAs, InAs, and InGaAs nanowires each exhibit significant potential to drive new applications in electronic and optoelectronic devices. Nevertheless, the development of these devices depends on our ability to fabricate these nanowires with tight control over critical properties, such as nanowire morphology, orientation, crystal structure, and chemical composition. Although GaAs and InAs are related material systems, GaAs and InAs nanowires exhibit very different growth behaviors. An understanding of these growth behaviors is imperative if high-quality ternary InGaAs nanowires are to be realized. This report examines GaAs, InAs, and InGaAs nanowires, and how their growth may be tailored to achieve desirable material properties. GaAs and InAs nanowire growth are compared, with a view toward the growth of high-quality InGaAs nanowires with device-accessible properties. © 2011 IEEE.
Resumo:
This report describes the implementation of a theory of edge detection, proposed by Marr and Hildreth (1979). According to this theory, the image is first processed independently through a set of different size filters, whose shape is the Laplacian of a Gaussian, ***. Zero-crossings in the output of these filters mark the positions of intensity changes at different resolutions. Information about these zero-crossings is then used for deriving a full symbolic description of changes in intensity in the image, called the raw primal sketch. The theory is closely tied with early processing in the human visual systems. In this report, we first examine the critical properties of the initial filters used in the edge detection process, both from a theoretical and practical standpoint. The implementation is then used as a test bed for exploring aspects of the human visual system; in particular, acuity and hyperacuity. Finally, we present some preliminary results concerning the relationship between zero-crossings detected at different resolutions, and some observations relevant to the process by which the human visual system integrates descriptions of intensity changes obtained at different resolutions.
Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction
Resumo:
Heat capacities of nine ionic liquids were measured from (293 to 358) K by using a heat flux differential scanning calorimeter. The impact of impurities (water and chloride content) in the ionic liquid was analyzed to estimate the overall uncertainty. The Joback method for predicting ideal gas heat capacities has been extended to ionic liquids by the generation of contribution parameters for three new groups. The principle of corresponding states has been employed to enable the subsequent calculation of liquid heat capacities for ionic liquids, based on critical properties predicted using the modified Lydersen-Joback-Reid method, as a function of the temperature from (256 to 470) K. A relative absolute deviation of 2.9% was observed when testing the model against 961 data points from 53 different ionic liquids reported previously and measured within this study.
Resumo:
Stem cells of normal mammalian tissues are defined as nonspecialized cells that have two critical properties: (a) the ability to renew themselves through cell division and (b) the potency to differentiate into other cell types. Therefore, they play a crucial role in development and in tissue homeostasis during adult life. Being long-lived, they can be the targets of environmental carcinogens leading to the accumulation of consecutive genetic changes. Hence, the genome of stem cells must be exceptionally well protected, and several protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment in any given tissue. Ionizing radiation exposure can disrupt tissue homeostasis both through the induction of cell killing/depletion of radiosensitive stem cells, leading to loss of tissue functionality and by genotoxic damage, increasing overall risk of cancer. We will review the current knowledge about radiation effects in adult stem cells of specific normal tissues, including skin, breast, and brain, examine parallels, as well as differences with cancer stem cells, and discuss the relevance of stem cell effects to radiation risk and radiotherapy. STEM CELLS 2011;29:1315-1321
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
Water still represents, on its critical properties and phase transitions, a problem of current scientific interest, as a consequence of the countless open questions and of the inadequacy of the existent theoretical models, mainly related to the different solid and liquid phases that this substance possesses. For example, there are 13 known crystalline forms of water, and also amorphous phases. One of them, the amorphous ice of very high density (VHDA), was just recently observed. Other example is the anomalous behavior in the macroscopic density, which presents a maximum at the temperature of 277 K. In order to experimentally investigate the behavior of one of the liquid-solid phase transitions, the anomaly in its density and also the metastability, we used three different cooling techniques and, as comparison systems, we made use of the solvents: acetone and ethyl alcohol. The first studied cooling system employ a Peltier plate, a device recently developed, which makes use of small cubes made up of semiconductors to change heat among two surfaces; the second system is a commercial refrigerator, similar to the residential ones. Finally, the liquid nitrogen technique, which is used to refrigerate the samples in a container, in two ways: a very fast and other one, almost static. In those three systems, three Beckers of aluminum were used (with a volume of 80 ml, each), containing water, alcohol and acetone. They were closed and maintained at atmospheric pressure. Inside of each Becker were installed three thermocouples, disposed along the vertical axis of the Beckers, one close to the inferior surface, other to the medium level and the last one close the superior surface. A system of data acquisition was built via virtual instrumentation using as a central equipment a Data-Acquisition board. The temperature data were collected by the three thermocouples in the three Beckers, simultaneously, in function of freezing time. We will present the behavior of temperature versus freezing time for the three substances. The results show the characterization of the transitions of the liquid
Resumo:
High-precision calculations of the correlation functions and order parameters were performed in order to investigate the critical properties of several two-dimensional ferro- magnetic systems: (i) the q-state Potts model; (ii) the Ashkin-Teller isotropic model; (iii) the spin-1 Ising model. We deduced exact relations connecting specific damages (the difference between two microscopic configurations of a model) and the above mentioned thermodynamic quanti- ties which permit its numerical calculation, by computer simulation and using any ergodic dynamics. The results obtained (critical temperature and exponents) reproduced all the known values, with an agreement up to several significant figures; of particular relevance were the estimates along the Baxter critical line (Ashkin-Teller model) where the exponents have a continuous variation. We also showed that this approach is less sensitive to the finite-size effects than the standard Monte-Carlo method. This analysis shows that the present approach produces equal or more accurate results, as compared to the usual Monte Carlo simulation, and can be useful to investigate these models in circumstances for which their behavior is not yet fully understood
Resumo:
In this thesis we investigate physical problems which present a high degree of complexity using tools and models of Statistical Mechanics. We give a special attention to systems with long-range interactions, such as one-dimensional long-range bondpercolation, complex networks without metric and vehicular traffic. The flux in linear chain (percolation) with bond between first neighbor only happens if pc = 1, but when we consider long-range interactions , the situation is completely different, i.e., the transitions between the percolating phase and non-percolating phase happens for pc < 1. This kind of transition happens even when the system is diluted ( dilution of sites ). Some of these effects are investigated in this work, for example, the extensivity of the system, the relation between critical properties and the dilution, etc. In particular we show that the dilution does not change the universality of the system. In another work, we analyze the implications of using a power law quality distribution for vertices in the growth dynamics of a network studied by Bianconi and Barabási. It incorporates in the preferential attachment the different ability (fitness) of the nodes to compete for links. Finally, we study the vehicular traffic on road networks when it is submitted to an increasing flux of cars. In this way, we develop two models which enable the analysis of the total flux on each road as well as the flux leaving the system and the behavior of the total number of congested roads
Resumo:
The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work
Resumo:
Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)
Resumo:
Monte Carlo-Simulationen zum kritischen Verhalten dünnerIsing-Filme Dünne Ising-Filme können als vereinfachtes Modell zurBeschreibung von binären Mischungen oder von Flüssigkeitenin schlitzartigen Kapillaren dienen. Infolge dereingeschränkten Geometrie unterscheidet sich das kritischeVerhalten dieser Systeme signifikant von dem einesBulk-Systems, es kommt zu einem Crossover von zwei- zudreidimensionalem kritischen Verhalten. Zusätzlichverschiebt sich der Phasenübergang in den ungesättigtenBereich, ein Effekt, der als 'capillary condensation'bezeichnet wird. In der vorliegenden Arbeit wurden die kritischenEigenschaften von Ising-Filmen im Rahmen einer MonteCarlo-Simulation untersucht. Zur Verbesserung der Effizienzwurde ein Cluster-Algorithmus verwendet, der um einenGhost-Spin-Term zur Behandlung der Magnetfelder erweitertwar. Bei der Datenanalyse kamen moderneMulti-Histogramm-Techniken zur Anwendung. Für alle untersuchten Schichtdicken konnten kritischeTemperatur und Magnetfeld sehr präzise bestimmt werden. DieSkalenhypothese von Fisher und Nakanishi, die dieVerschiebung des kritischen Punktes gegenüber seinesBulk-Wertes beschreibt, wurde sowohl für Systeme mit freienOberflächen als auch für Systeme mit schwachemOberflächenfeld bestätigt. Der Wert des Gap-Exponenten derOberfläche wurde mit $Delta_1$=0.459(13) in Übereinstimmungmit den Literaturwerten abgeschätzt. Die Observablen Magnetisierung und magnetischeSuszeptibilität sowie deren auf die Oberfläche bezogenenEntsprechungen zeigen kein reines zweidimensionaleskritisches Verhalten. Zu ihrer Beschreibung in der Nähe deskritischen Punktes wurden effektive Exponenten für dieeinzelnen Schichtdicken bestimmt.
Resumo:
Over the past years, the paradigm of component-based software engineering has been established in the construction of complex mission-critical systems. Due to this trend, there is a practical need for techniques that evaluate critical properties (such as safety, reliability, availability or performance) of these systems. In this paper, we review several high-level techniques for the evaluation of safety properties for component-based systems and we propose a new evaluation model (State Event Fault Trees) that extends safety analysis towards a lower abstraction level. This model possesses a state-event semantics and strong encapsulation, which is especially useful for the evaluation of component-based software systems. Finally, we compare the techniques and give suggestions for their combined usage
Resumo:
Efficient new Bayesian inference technique is employed for studying critical properties of the Ising linear perceptron and for signal detection in code division multiple access (CDMA). The approach is based on a recently introduced message passing technique for densely connected systems. Here we study both critical and non-critical regimes. Results obtained in the non-critical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also studied. © 2006 Elsevier B.V. All rights reserved.
Resumo:
An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance. © 2007 The American Physical Society.