997 resultados para computational architecture
Resumo:
Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.
Resumo:
some resources on agile methods and enterprise architecture frameworks
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Resumo:
In the Biodiversity World (BDW) project we have created a flexible and extensible Web Services-based Grid environment for biodiversity researchers to solve problems in biodiversity and analyse biodiversity patterns. In this environment, heterogeneous and globally distributed biodiversity-related resources such as data sets and analytical tools are made available to be accessed and assembled by users into workflows to perform complex scientific experiments. One such experiment is bioclimatic modelling of the geographical distribution of individual species using climate variables in order to predict past and future climate-related changes in species distribution. Data sources and analytical tools required for such analysis of species distribution are widely dispersed, available on heterogeneous platforms, present data in different formats and lack interoperability. The BDW system brings all these disparate units together so that the user can combine tools with little thought as to their availability, data formats and interoperability. The current Web Servicesbased Grid environment enables execution of the BDW workflow tasks in remote nodes but with a limited scope. The next step in the evolution of the BDW architecture is to enable workflow tasks to utilise computational resources available within and outside the BDW domain. We describe the present BDW architecture and its transition to a new framework which provides a distributed computational environment for mapping and executing workflows in addition to bringing together heterogeneous resources and analytical tools.
Resumo:
It is usually expected that the intelligent controlling mechanism of a robot is a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot - thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. In particular, the use of rodent primary dissociated cultured neuronal networks for the control of mobile `animals' (artificial animals, a contraction of animal and materials) is a novel approach to discovering the computational capabilities of networks of biological neurones. A dissociated culture of this nature requires appropriate embodiment in some form, to enable appropriate development in a controlled environment within which appropriate stimuli may be received via sensory data but ultimate influence over motor actions retained. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animal) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This 'closed loop' interaction with the environment through both sensing and effecting will enable investigation of its learning capacity This paper details the components of the overall animat closed loop system and reports on the evaluation of the results from the experiments being carried out with regard to robot behaviour.
Resumo:
Web service-based application is an architectural style, where a collection of Web services communicates to each other to execute processes. With the popularity increase of developing Web service-based application and once Web services may change, in terms of functional and non-functional Quality of Service (QoS), we need mechanisms to monitor, diagnose, and repair Web services into a Web Application. This work presents a description of self-healing architecture that deals with these mechanisms. Other contributions of this paper are using the proxy server to measure Web service QoS values and to employ some strategies to recovery the effects from misbehaved Web services. © 2008 IEEE.
Resumo:
Supervising and controlling the many processes involved in petroleum production is both dangerous and complex. Herein, we propose a multiagent supervisory and control system for handle continuous processes like those in chemical and petroleum industries In its architeture, there are agents responsible for managing data production and analysis, and also the production equipments. Fuzzy controllers were used as control agents. The application of a fuzzy control system to managing an off-shore installation for petroleum production onto a submarine separation process is described. © 2008 IEEE.
Resumo:
Interaction protocols establish how different computational entities can interact with each other. The interaction can be finalized to the exchange of data, as in 'communication protocols', or can be oriented to achieve some result, as in 'application protocols'. Moreover, with the increasing complexity of modern distributed systems, protocols are used also to control such a complexity, and to ensure that the system as a whole evolves with certain features. However, the extensive use of protocols has raised some issues, from the language for specifying them to the several verification aspects. Computational Logic provides models, languages and tools that can be effectively adopted to address such issues: its declarative nature can be exploited for a protocol specification language, while its operational counterpart can be used to reason upon such specifications. In this thesis we propose a proof-theoretic framework, called SCIFF, together with its extensions. SCIFF is based on Abductive Logic Programming, and provides a formal specification language with a clear declarative semantics (based on abduction). The operational counterpart is given by a proof procedure, that allows to reason upon the specifications and to test the conformance of given interactions w.r.t. a defined protocol. Moreover, by suitably adapting the SCIFF Framework, we propose solutions for addressing (1) the protocol properties verification (g-SCIFF Framework), and (2) the a-priori conformance verification of peers w.r.t. the given protocol (AlLoWS Framework). We introduce also an agent based architecture, the SCIFF Agent Platform, where the same protocol specification can be used to program and to ease the implementation task of the interacting peers.
Resumo:
A recent initiative of the European Space Agency (ESA) aims at the definition and adoption of a software reference architecture for use in on-board software of future space missions. Our PhD project placed in the context of that effort. At the outset of our work we gathered all the industrial needs relevant to ESA and all the main European space stakeholders and we were able to consolidate a set of technical high-level requirements for the fulfillment of them. The conclusion we reached from that phase confirmed that the adoption of a software reference architecture was indeed the best solution for the fulfillment of the high-level requirements. The software reference architecture we set on building rests on four constituents: (i) a component model, to design the software as a composition of individually verifiable and reusable software units; (ii) a computational model, to ensure that the architectural description of the software is statically analyzable; (iii) a programming model, to ensure that the implementation of the design entities conforms with the semantics, the assumptions and the constraints of the computational model; (iv) a conforming execution platform, to actively preserve at run time the properties asserted by static analysis. The nature, feasibility and fitness of constituents (ii), (iii) and (iv), were already proved by the author in an international project that preceded the commencement of the PhD work. The core of the PhD project was therefore centered on the design and prototype implementation of constituent (i), a component model. Our proposed component model is centered on: (i) rigorous separation of concerns, achieved with the support for design views and by careful allocation of concerns to the dedicated software entities; (ii) the support for specification and model-based analysis of extra-functional properties; (iii) the inclusion space-specific concerns.
Resumo:
The efficient emulation of a many-core architecture is a challenging task, each core could be emulated through a dedicated thread and such threads would be interleaved on an either single-core or a multi-core processor. The high number of context switches will results in an unacceptable performance. To support this kind of application, the GPU computational power is exploited in order to schedule the emulation threads on the GPU cores. This presents a non trivial divergence issue, since GPU computational power is offered through SIMD processing elements, that are forced to synchronously execute the same instruction on different memory portions. Thus, a new emulation technique is introduced in order to overcome this limitation: instead of providing a routine for each ISA opcode, the emulator mimics the behavior of the Micro Architecture level, here instructions are date that a unique routine takes as input. Our new technique has been implemented and compared with the classic emulation approach, in order to investigate the chance of a hybrid solution.
Resumo:
The mechanical action of the heart is made possible in response to electrical events that involve the cardiac cells, a property that classifies the heart tissue between the excitable tissues. At the cellular level, the electrical event is the signal that triggers the mechanical contraction, inducing a transient increase in intracellular calcium which, in turn, carries the message of contraction to the contractile proteins of the cell. The primary goal of my project was to implement in CUDA (Compute Unified Device Architecture, an hardware architecture for parallel processing created by NVIDIA) a tissue model of the rabbit sinoatrial node to evaluate the heterogeneity of its structure and how that variability influences the behavior of the cells. In particular, each cell has an intrinsic discharge frequency, thus different from that of every other cell of the tissue and it is interesting to study the process of synchronization of the cells and look at the value of the last discharge frequency if they synchronized.
Resumo:
This article proposes a MAS architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypothesis generation and hypothesis confirmation. The first process is distributed among several agents based on a MSBN, while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both inference processes. To drive the deliberation process, dynamic data about the influence of observations are taken during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlight as conclusions.
Resumo:
Systems relying on fixed hardware components with a static level of parallelism can suffer from an underuse of logical resources, since they have to be designed for the worst-case scenario. This problem is especially important in video applications due to the emergence of new flexible standards, like Scalable Video Coding (SVC), which offer several levels of scalability. In this paper, Dynamic and Partial Reconfiguration (DPR) of modern FPGAs is used to achieve run-time variable parallelism, by using scalable architectures where the size can be adapted at run-time. Based on this proposal, a scalable Deblocking Filter core (DF), compliant with the H.264/AVC and SVC standards has been designed. This scalable DF allows run-time addition or removal of computational units working in parallel. Scalability is offered together with a scalable parallelization strategy at the macroblock (MB) level, such that when the size of the architecture changes, MB filtering order is modified accordingly
Resumo:
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead
Resumo:
We discuss from a practical point of view a number of issues involved in writing Internet and WWW applications using LP/CLP systems. We describe Pd_l_oW, a public-domain Internet and WWW programming library for LP/CLP systems which we argüe significantly simplifies the process of writing such applications. Pd_l_oW provides facilities for generating HTML structured documents, producing HTML forms, writing form handlers, accessing and parsing WWW documents, and accessing code posted at HTTP addresses. We also describe the architecture of some application classes, using a high-level model of client-server interaction, active modules. We then propose an architecture for automatic LP/CLP code downloading for local execution, using generic browsers. Finally, we also provide an overview of related work on the topic. The PiLLoW library has been developed in the context of the &- Prolog and CIAO systems, but it has been adapted to a number of popular LP/CLP systems, supporting most of its functionality.