992 resultados para collection card game
Resumo:
The current study examined the frequency and quality of how 3- to 4-year-old children and their parents explore the relations between symbolic and non-symbolic quantities in the context of a playful math experience, as well as the role of both parent and child factors in this exploration. Preschool children’s numerical knowledge was assessed while parents completed a survey about the number-related experiences they share with their children at home, and their math-related beliefs. Parent-child dyads were then videotaped playing a modified version of the card game War. Results suggest that parents and children explored quantity explicitly on only half of the cards and card pairs played, and dyads of young children and those with lower number knowledge tended to be most explicit in their quantity exploration. Dyads with older children, on the other hand, often completed their turns without discussing the numbers at all, likely because they were knowledgeable enough about numbers that they could move through the game with ease. However, when dyads did explore the quantities explicitly, they focused on identifying numbers symbolically, used non-symbolic card information interchangeably with symbolic information to make the quantity comparison judgments, and in some instances, emphasized the connection between the symbolic and non-symbolic number representations on the cards. Parents reported that math experiences such as card game play and quantity comparison occurred relatively infrequently at home compared to activities geared towards more foundational practice of number, such as counting out loud and naming numbers. However, parental beliefs were important in predicting both the frequency of at-home math engagement as well as the quality of these experiences. In particular, parents’ specific beliefs about their children’s abilities and interests were associated with the frequency of home math activities, while parents’ math-related ability beliefs and values along with children’s engagement in the card game were associated with the quality of dyads’ number exploration during the card game. Taken together, these findings suggest that card games can be an engaging context for parent-preschooler exploration of numbers in multiple representations, and suggests that parents’ beliefs and children’s level of engagement are important predictors of this exploration.
Resumo:
(Original loaned to library for scanning)
Resumo:
v.37:no.1(1955)
Resumo:
Items include: 13 small poems clipped from newspapers. None of the poems list authors. Most of the poems are based on life lessons. Clippings of short stories which appear to have come from a St. Catharines newspaper. The stories include anecdotes, humour and medical advice. There is no author listed on any of the stories. 2 coloured sewing machine advertisements each measuring 9 cm. x 13 cm. and 9 cm. x 14 cm. 1 broadside measuring 27 cm. x 37 cm. and posted by the Peninsular Game Club of St. Catharines. The broadside is a copy of the game laws of 1874 with a warning that breach of these laws will bring rigorous prosecution.
Resumo:
In portfolio. 19 x 27 cm.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references and index.
Resumo:
Paging irregular, following starred paging of earlier edition, inset in the margin of the text.
Resumo:
Goldsmiths'-Kress no. 07751.0, suppl.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.
Resumo:
Työn tavoitteena oli luoda asiakassuhteidenhallintakonsepti Internetpelijärjestelmälle sekä luoda asiakassuhteidenhallintaprosessi keskittyen viestintä- ja personointiominaisuuksiin. Lisäksi työssä määritettiin CRM järjestelmän ominaisuudet ja toiminnallisuudet. Työ toteutettiin kvalitatiivisena case tutkimuksena. Tiedot empiiristä tutkimusta varten kerättiin haastattelemalla kohderyhminä olleita asiakkaita sekä case-yrityksen avainhenkilöitä. Työssä selvitettiin ensin suhdemarkkinoinnin perusteet, konsepti sekä asiakassuhteen arvo. Yhteys peliliiketoimintaan sekä Internet peliliiketoiminnan perusteet esitettin. CRM konsepti määriteltiin teoriassa sekä CRM prosessi määritettin perustuen teoreettiseen tutkimukseen sekä empiirisiin tuloksiin. Seuraavaksi luotiin CRM konsepti case-yritykselle perustuen CRM prosessin tuottamaan informaatioon ja asiakastarpeisiin. Asiakassuhteiden hallinta voidaan jakaa kolmeen tasoon - strategiseen, analyyttiseen ja toiminnalliseen. CRM konseptin luominen on tapauskohtainen prosessi. Siihen vaikuttaa voimakkaasti toimiala, millä yritys toimii. Myös asiakastarpeiden kartoituksella on tärkeä merkitys onnistuneen konseptin luomisessa. Sekä kirjallisuuteen perustuvat, että empiiriset havainnot painottivat personoinnin ja viestinnän vaikutusta CRM konseptissa.