975 resultados para coarse-graining
Resumo:
We present molecular dynamics (MD) and slip-springs model simulations of the chain segmental dynamics in entangled linear polymer melts. The time-dependent behavior of the segmental orientation autocorrelation functions and mean-square segmental displacements are analyzed for both flexible and semiflexible chains, with particular attention paid to the scaling relations among these dynamic quantities. Effective combination of the two simulation methods at different coarse-graining levels allows us to explore the chain dynamics for chain lengths ranging from Z ≈ 2 to 90 entanglements. For a given chain length of Z ≈ 15, the time scales accessed span for more than 10 decades, covering all of the interesting relaxation regimes. The obtained time dependence of the monomer mean square displacements, g1(t), is in good agreement with the tube theory predictions. Results on the first- and second-order segmental orientation autocorrelation functions, C1(t) and C2(t), demonstrate a clear power law relationship of C2(t) C1(t)m with m = 3, 2, and 1 in the initial, free Rouse, and entangled (constrained Rouse) regimes, respectively. The return-to-origin hypothesis, which leads to inverse proportionality between the segmental orientation autocorrelation functions and g1(t) in the entangled regime, is convincingly verified by the simulation result of C1(t) g1(t)−1 t–1/4 in the constrained Rouse regime, where for well-entangled chains both C1(t) and g1(t) are rather insensitive to the constraint release effects. However, the second-order correlation function, C2(t), shows much stronger sensitivity to the constraint release effects and experiences a protracted crossover from the free Rouse to entangled regime. This crossover region extends for at least one decade in time longer than that of C1(t). The predicted time scaling behavior of C2(t) t–1/4 is observed in slip-springs simulations only at chain length of 90 entanglements, whereas shorter chains show higher scaling exponents. The reported simulation work can be applied to understand the observations of the NMR experiments.
Resumo:
We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluid–fluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.
Resumo:
To assist rational compound design of organic semiconductors, two problems need to be addressed. First, the material morphology has to be known at an atomistic level. Second, with the morphology at hand, an appropriate charge transport model needs to be developed in order to link charge carrier mobility to structure.rnrnThe former can be addressed by generating atomistic morphologies using molecular dynamics simulations. However, the accessible range of time- and length-scales is limited. To overcome these limitations, systematic coarse-graining methods can be used. In the first part of the thesis, the Versatile Object-oriented Toolkit for Coarse-graining Applications is introduced, which provides a platform for the implementation of coarse-graining methods. Tools to perform Boltzmann inversion, iterative Boltzmann inversion, inverse Monte Carlo, and force-matching are available and have been tested on a set of model systems (water, methanol, propane and a single hexane chain). Advantages and problems of each specific method are discussed.rnrnIn partially disordered systems, the second issue is closely connected to constructing appropriate diabatic states between which charge transfer occurs. In the second part of the thesis, the description initially used for small conjugated molecules is extended to conjugated polymers. Here, charge transport is modeled by introducing conjugated segments on which charge carriers are localized. Inter-chain transport is then treated within a high temperature non-adiabatic Marcus theory while an adiabatic rate expression is used for intra-chain transport. The charge dynamics is simulated using the kinetic Monte Carlo method.rnrnThe entire framework is finally employed to establish a relation between the morphology and the charge mobility of the neutral and doped states of polypyrrole, a conjugated polymer. It is shown that for short oligomers, charge carrier mobility is insensitive to the orientational molecular ordering and is determined by the threshold transfer integral which connects percolating clusters of molecules that form interconnected networks. The value of this transfer integral can be related to the radial distribution function. Hence, charge mobility is mainly determined by the local molecular packing and is independent of the global morphology, at least in such a non-crystalline state of a polymer.
Resumo:
The ability of block copolymers to spontaneously self-assemble into a variety of ordered nano-structures not only makes them a scientifically interesting system for the investigation of order-disorder phase transitions, but also offers a wide range of nano-technological applications. The architecture of a diblock is the most simple among the block copolymer systems, hence it is often used as a model system in both experiment and theory. We introduce a new soft-tetramer model for efficient computer simulations of diblock copolymer melts. The instantaneous non-spherical shape of polymer chains in molten state is incorporated by modeling each of the two blocks as two soft spheres. The interactions between the spheres are modeled in a way that the diblock melt tends to microphase separate with decreasing temperature. Using Monte Carlo simulations, we determine the equilibrium structures at variable values of the two relevant control parameters, the diblock composition and the incompatibility of unlike components. The simplicity of the model allows us to scan the control parameter space in a completeness that has not been reached in previous molecular simulations.The resulting phase diagram shows clear similarities with the phase diagram found in experiments. Moreover, we show that structural details of block copolymer chains can be reproduced by our simple model.We develop a novel method for the identification of the observed diblock copolymer mesophases that formalizes the usual approach of direct visual observation,using the characteristic geometry of the structures. A cluster analysis algorithm is used to determine clusters of each component of the diblock, and the number and shape of the clusters can be used to determine the mesophase.We also employ methods from integral geometry for the identification of mesophases and compare their usefulness to the cluster analysis approach.To probe the properties of our model in confinement, we perform molecular dynamics simulations of atomistic polyethylene melts confined between graphite surfaces. The results from these simulations are used as an input for an iterative coarse-graining procedure that yields a surface interaction potential for the soft-tetramer model. Using the interaction potential derived in that way, we perform an initial study on the behavior of the soft-tetramer model in confinement. Comparing with experimental studies, we find that our model can reflect basic features of confined diblock copolymer melts.
Resumo:
In der vorliegenden Arbeit werden verschiedene Wassermodelle in sogenannten Multiskalen-Computersimulationen mit zwei Auflösungen untersucht, in atomistischer Auflösung und in einer vergröberten Auflösung, die als "coarse-grained" bezeichnet wird. In der atomistischen Auflösung wird ein Wassermolekül, entsprechend seiner chemischen Struktur, durch drei Atome beschrieben, im Gegensatz dazu wird ein Molekül in der coarse-grained Auflösung durch eine Kugel dargestellt.rnrnDie coarse-grained Modelle, die in dieser Arbeit vorgestellt werden, werden mit verschiedenen coarse-graining Methoden entwickelt. Hierbei kommen hauptsächlich die "iterative Boltzmann Inversion" und die "iterative Monte Carlo Inversion" zum Einsatz. Beides sind struktur-basierte Ansätze, die darauf abzielen bestimmte strukturelle Eigenschaften, wie etwa die Paarverteilungsfunktionen, des zugrundeliegenden atomistischen Systems zu reproduzieren. Zur automatisierten Anwendung dieser Methoden wurde das Softwarepaket "Versatile Object-oriented Toolkit for Coarse-Graining Applications" (VOTCA) entwickelt.rnrnEs wird untersucht, in welchem Maße coarse-grained Modelle mehrere Eigenschaftenrndes zugrundeliegenden atomistischen Modells gleichzeitig reproduzieren können, z.B. thermodynamische Eigenschaften wie Druck und Kompressibilität oder strukturelle Eigenschaften, die nicht zur Modellbildung verwendet wurden, z.B. das tetraedrische Packungsverhalten, welches für viele spezielle Eigenschaft von Wasser verantwortlich ist.rnrnMit Hilfe des "Adaptive Resolution Schemes" werden beide Auflösungen in einer Simulation kombiniert. Dabei profitiert man von den Vorteilen beider Modelle:rnVon der detaillierten Darstellung eines räumlich kleinen Bereichs in atomistischer Auflösung und von der rechnerischen Effizienz des coarse-grained Modells, die den Bereich simulierbarer Zeit- und Längenskalen vergrössert.rnrnIn diesen Simulationen kann der Einfluss des Wasserstoffbrückenbindungsnetzwerks auf die Hydration von Fullerenen untersucht werden. Es zeigt sich, dass die Struktur der Wassermoleküle an der Oberfläche hauptsächlich von der Art der Wechselwirkung zwischen dem Fulleren und Wasser und weniger von dem Wasserstoffbrückenbindungsnetzwerk dominiert wird.rn
Resumo:
Wir analysieren die Rolle von "Hintergrundunabhängigkeit" im Zugang der effektiven Mittelwertwirkung zur Quantengravitation. Wenn der nicht-störungstheoretische Renormierungsgruppen-(RG)-Fluß "hintergrundunabhängig" ist, muß die Vergröberung durch eine nicht spezifizierte, variable Metrik definiert werden. Die Forderung nach "Hintergrundunabhängigkeit" in der Quantengravitation führt dazu, daß die funktionale RG-Gleichung von zusätzlichen Feldern abhängt; dadurch unterscheidet sich der RG-Fluß in der Quantengravitation deutlich von dem RG-Fluß einer gewöhnlichen Quantentheorie, deren Moden-Cutoff von einer starren Metrik abhängt. Beispielsweise kann in der "hintergrundunabhängigen" Theorie ein Nicht-Gauß'scher Fixpunkt existieren, obwohl die entsprechende gewöhnliche Quantentheorie keinen solchen entwickelt. Wir untersuchen die Bedeutung dieses universellen, rein kinematischen Effektes, indem wir den RG-Fluß der Quanten-Einstein-Gravitation (QEG) in einem "konform-reduzierten" Zusammenhang untersuchen, in dem wir nur den konformen Faktor der Metrik quantisieren. Alle anderen Freiheitsgrade der Metrik werden vernachlässigt. Die konforme Reduktion der Einstein-Hilbert-Trunkierung zeigt exakt dieselben qualitativen Eigenschaften wie in der vollen Einstein-Hilbert-Trunkierung. Insbesondere besitzt sie einen Nicht-Gauß'schen Fixpunkt, der notwendig ist, damit die Gravitation asymptotisch sicher ist. Ohne diese zusätzlichen Feldabhängigkeiten ist der RG-Fluß dieser Trunkierung der einer gewöhnlichen $phi^4$-Theorie. Die lokale Potentialnäherung für den konformen Faktor verallgemeinert den RG-Fluß in der Quantengravitation auf einen unendlich-dimensionalen Theorienraum. Auch hier finden wir sowohl einen Gauß'schen als auch einen Nicht-Gauß'schen Fixpunkt, was weitere Hinweise dafür liefert, daß die Quantengravitation asymptotisch sicher ist. Das Analogon der Metrik-Invarianten, die proportional zur dritten Potenz der Krümmung ist und die die störungstheoretische Renormierbarkeit zerstört, ist unproblematisch für die asymptotische Sicherheit der konform-reduzierten Theorie. Wir berechnen die Skalenfelder und -imensionen der beiden Fixpunkte explizit und diskutieren mögliche Einflüsse auf die Vorhersagekraft der Theorie. Da der RG-Fluß von der Topologie der zugrundeliegenden Raumzeit abhängt, diskutieren wir sowohl den flachen Raum als auch die Sphäre. Wir lösen die Flußgleichung für das Potential numerisch und erhalten Beispiele für RG-Trajektorien, die innerhalb der Ultraviolett-kritischen Mannigfaltigkeit des Nicht-Gauß'schen Fixpunktes liegen. Die Quantentheorien, die durch einige solcher Trajektorien definiert sind, zeigen einen Phasenübergang von der bekannten (Niederenergie-) Phase der Gravitation mit spontan gebrochener Diffeomorphismus-Invarianz zu einer neuen Phase von ungebrochener Diffeomorphismus-Invarianz. Diese Hochenergie-Phase ist durch einen verschwindenden Metrik-Erwartungswert charakterisiert.
Resumo:
Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e.g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e.g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8-hydroxyquinoline)aluminium (Alq3). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq3, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated mobilities depend strongly on the system size. A method for extrapolating calculated mobilities to the infinite system size is proposed, allowing direct comparison of simulation results and time-of-flight experiments. The extracted value of the nondispersive hole mobility and its electric field dependence for amorphous Alq3 agree well with the experimental results.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
Amphiphile Peptide, Pro-Glu-(Phe-Glu)n-Pro, Pro-Asp-(Phe-Asp)n-Pro, und Phe-Glu-(Phe-Glu)n-Phe, können so aus n alternierenden Sequenzen von hydrophoben und hydrophilen Aminosäuren konstruiert werden, dass sie sich in Monolagen an der Luft-Wasser Grenzfläche anordnen. In biologischen Systemen können Strukturen an der organisch-wässrigen Grenzfläche als Matrix für die Kristallisation von Hydroxyapatit dienen, ein Vorgang der für die Behandlung von Osteoporose verwendet werden kann. In der vorliegenden Arbeit wurden Computersimulationenrneingesetzt, um die Strukturen und die zugrunde liegenden Wechselwirkungen welche die Aggregation der Peptide auf mikroskopischer Ebene steuern, zu untersuchen. Atomistische Molekulardynamik-Simulationen von einzelnen Peptidsträngen zeigen, dass sie sich leicht an der Luft-Wasser Grenzfläche anordnen und die Fähigkeit haben, sich in β-Schleifen zu falten, selbst für relativ kurze Peptidlängen (n = 2). Seltene Ereignisse wie diese (i.e. Konformationsänderungen) erfordern den Einsatz fortgeschrittener Sampling-Techniken. Hier wurde “Replica Exchange” Molekulardynamik verwendet um den Einfluss der Peptidsequenzen zu untersuchen. Die Simulationsergebnisse zeigten, dass Peptide mit kürzeren azidischen Seitenketten (Asp vs. Glu) gestrecktere Konformationen aufwiesen als die mit längeren Seitenketten, die in der Lage waren die Prolin-Termini zu erreichen. Darüber hinaus zeigte sich, dass die Prolin-Termini (Pro vs. Phe) notwendig sind, um eine 2D-Ordnung innerhalb derrnAggregate zu erhalten. Das Peptid Pro-Asp-(Phe-Asp)n-Pro, das beide dieser Eigenschaften enthält, zeigt das geordnetste Verhalten, eine geringe Verdrehung der Hauptkette, und ist in der Lage die gebildeten Aggregate durch Wasserstoffbrücken zwischen den sauren Seitenketten zu stabilisieren. Somit ist dieses Peptid am besten zur Aggregation geeignet. Dies wurde auch durch die Beurteilung der Stabilität von experimentnah-aufgesetzten Peptidaggregaten, sowie der Neigung einzelner Peptide zur Selbstorganisation von anfänglich ungeordneten Konfigurationen unterstützt. Da atomistische Simulationen nur auf kleine Systemgrößen und relativ kurze Zeitskalen begrenzt sind, wird ein vergröbertes Modell entwickelt damit die Selbstorganisation auf einem größeren Maßstab studiert werden kann. Da die Selbstorganisation an der Grenzfläche vonrnInteresse ist, wurden existierenden Vergröberungsmethoden erweitert, um nicht-gebundene Potentiale für inhomogene Systeme zu bestimmen. Die entwickelte Methode ist analog zur iterativen Boltzmann Inversion, bildet aber das Update für das Interaktionspotential basierend auf der radialen Verteilungsfunktion in einer Slab-Geometrie und den Breiten des Slabs und der Grenzfläche. Somit kann ein Kompromiss zwischen der lokalen Flüssigketsstruktur und den thermodynamischen Eigenschaften der Grenzfläche erreicht werden. Die neue Methode wurde für einen Wasser- und einen Methanol-Slab im Vakuum demonstriert, sowie für ein einzelnes Benzolmolekül an der Vakuum-Wasser Grenzfläche, eine Anwendung die von besonderer Bedeutung in der Biologie ist, in der oft das thermodynamische/Grenzflächenpolymerisations-Verhalten zusätzlich der strukturellen Eigenschaften des Systems erhalten werden müssen. Daraufrnbasierend wurde ein vergröbertes Modell über einen Fragment-Ansatz parametrisiert und die Affinität des Peptids zur Vakuum-Wasser Grenzfläche getestet. Obwohl die einzelnen Fragmente sowohl die Struktur als auch die Wahrscheinlichkeitsverteilungen an der Grenzfläche reproduzierten, diffundierte das Peptid als Ganzes von der Grenzfläche weg. Jedoch führte eine Reparametrisierung der nicht-gebundenen Wechselwirkungen für eines der Fragmente der Hauptkette in einem Trimer dazu, dass das Peptid an der Grenzfläche blieb. Dies deutet darauf hin, dass die Kettenkonnektivität eine wichtige Rolle im Verhalten des Petpids an der Grenzfläche spielt.
Resumo:
In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn
Resumo:
This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalized, including to continuous cases and general networks. By applying this measure to a series of objects, it is shown that it can be consistently used for both small scale structures with exact symmetry breaking and large scale patterns, for which, differently from similar measures, it consistently discriminates between repetitive patterns, random configurations and self-similar structures
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
International audience