1000 resultados para classificação digital
Resumo:
O presente trabalho teve como proposta avaliar a identificação e o mapeamento das áreas de milho da região noroeste do Estado do Rio Grande do Sul a partir de dados multitemporais do sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo do satélite Earth Observing System - EOS-AM (Terra). O algoritmo de classificação supervisionada Spectral Angle Mapper (SAM) foi aplicado com sucesso em uma série multitemporal de imagens EVI pré-processadas. Verificou-se que as áreas classificadas como milho na imagem coincidiam plenamente com áreas mais extensas ou contínuas (> 90 ha) de milho. Áreas de menor extensão ou localizadas em encostas de morros, ao lado de vegetação arbórea, não foram detectadas pelo classificador devido à baixa resolução espacial das imagens. A maior utilidade prática da identificação e da classificação digital das áreas de milho obtidas das imagens MODIS está na sua aplicação para isolar ou complementar o mapeamento das áreas agrícolas visando ao seu monitoramento a partir de diferentes índices de vegetação, derivados de imagens de alta resolução temporal e baixa resolução espacial.
Resumo:
Os processamentos de imagens orbitais efetuados através de técnicas de sensoriamento remoto geraram informações qualitativas de natureza textural (morfo-estruturas). Estas permitiram (1) o reconhecimento de áreas com diferentes padrões estruturais tendo diferentes potencialidades para a prospecção de fluorita, (2) a identificação de novos lineamentos estruturais potencialmente favoráveis à mineralização e (3) evidenciaram prolongamentos extensos para as principais estruturas mineralizadas, (4) às quais se associam um grande número de estruturas, antes desconhecidas, com grande potencial prospectivo. O aprimoramento de técnicas de classificação digital sobre produtos de razões de bandas e análise por componentes principais permitiu identificar a alteração hidrotermal associada às estruturas, incorporando novos critérios para a prospecção de fluorita. Buscando-se quantificar os dados de alteração hidrotermal, foi efetuada a análise espectrorradiométrica das rochas do distrito fluorítico. Integrando estas informações com dados TM LANDSAT 5, em nível de reflectância, obteve-se a classificação espectral das imagens orbitais, o que permitiu a identificação de estruturas menores com um detalhe nunca antes obtido. Os processamentos de dados aerogeofísicos forneceram resultados sobre estruturas (magnetometria) e corpos graníticos afetados por alteração hidrotermal (aerogamaespectrometria). Estes produtos foram integrados com dados TM LANDSAT 5 associando o atributo textural da imagem orbital ao comportamento radiométrico das rochas. Diagnosticou-se o lineamento Grão-Pará como o principal prospecto do distrito. E levantaram-se uma série de dados sobre a compartimentação tectônica da região, a zonação de fácies das rochas graníticas (rocha fonte do flúor) e as alterações hidrotermais associadas ao magmatismo granítico. Isto permitiu a compreensão da distribuição regional dos depósitos de fluorita, adicionando-se um novo critério à prospecção de fluorita, a relação espacial entre a mineralização e a rocha fonte de F. Esta última corresponde à fácies granítica da borda do Maciço Pedras Grandes.
Resumo:
Informações sobre as condições de crescimento e expectativa de produção de culturas são importantes para a economia brasileira, visto que permitem um planejamento adequado da economia agrícola, contornando problemas de escassez e administrando com vantagens o excesso de produtos. Neste contexto, as tecnologias de sensoriamento remoto e geoprocessamento permitem a obtenção de informações precisas, em tempo hábil e com baixo custo. O presente trabalho teve como principal objetivo gerar subsídios para o aprimoramento do sistema atual de acompanhamento e previsão da safra de soja no Brasil, incorporando técnicas de sensoriamento remoto e geoprocessamento. Como objetivos específicos, buscou-se avaliar a acurácia da classificação digital de imagens LANDSAT para estimativa da área cultivada com soja e verificar a influência de aspectos regionais, tais como condições climáticas, de ocupação e de manejo, sobre a evolução temporal do índice de vegetação por diferença normalizada (NDVI), obtidos de imagens NOAA, visando o monitoramento da cultura da soja em projetos de previsão de safras. A estimativa de área cultivada com soja foi realizada através da classificação digital não supervisionada. Como verdade terrestre foram selecionadas 24 lavouras de soja, individualizadas na imagem com diferentes tamanhos e de diferentes regiões de uso e cobertura do solo, as quais foram quantificadas usando GPS de precisão topográfica. A verificação da acurácia da estimativa foi feita através de análise de regressão linear, sendo testada a significância do coeficiente de determinação. O monitoramento da cultura da soja foi realizada usando imagens decendiais de máximo NDVI. Nestas imagens, foram selecionadas 18 janelas amostrais, sendo extraídos os valores de NDVI e expressos na forma de perfis espectrais. Os resultados mostraram que a estimativa de área das lavouras cultivadas com soja, obtida através do processo de classificação digital não supervisionada em imagens LANDSAT, foi acurada e precisa para pequenas, médias e grandes lavouras, mostrando-se ser uma técnica eficiente para ser utilizada em projetos de previsão de safras de soja na região estudada. A evolução temporal do NDVI, obtida de imagens NOAA, apresentou sensibilidade quanto às diferenças de uso e cobertura do solo, demonstrando que as escalas espacial e temporal das imagens NOAA são adequadas para o acompanhamento em nível regional da evolução temporal da biomassa. Existe, ainda, potencial de uso de imagens NDVI para inferir sobre a área cultivada com soja em projetos de previsão de safras em escalas regionais, desde que a cultura seja predominante no pixel.
Resumo:
O presente trabalho teve como objetivo identificar e quantificar o uso da terra em dez microbacias ocorrentes na bacia do Rio Capivara, município de Botucatu - SP, a partir da estruturação de um banco de dados utilizando o Sistema de Informações Geográficas (SIG) - IDRISI. Os resultados mostram que as classes de uso da terra, uso agrícola e pastagem, foram as mais significativas, pois ocuparam mais da metade da área das microbacias. O alto índice de uso da terra por pastagens, capoeiras, reflorestamento e matas reflete a predominância de solos arenosos com baixa fertilidade. As imagens obtidas do satélite LANDSAT 5 permitiram o mapeamento do uso da terra de maneira rápida, além de fornecer um excelente banco de dados para futuro planejamento e gerenciamento das atividades agropecuárias regionais. O SIG-IDRISI permitiu identificar, por meio de seus diferentes módulos para georreferenciamento, classificação digital e modelo matemático, as classes de uso da terra com rapidez.
Resumo:
The mapping of the land use, vegetation and environmental impacts using remote sensing ana geoprocessmg allow detection, spatial representation and quantification of the alterations caused by the human action on the nature, contributing to the monitoring and planning of those activities that may cause damages to the environment. This study apply methodologies based on digital processing of orbital images for the mapping of the land use, vegetation and anthropic activities that cause impacts in the environment. It was considered a test area in the district of Assistência and surroundings, in Rio Claro (SP) region. The methodology proposed was checked through the crossing of maps in the software GIS - Idrisi. These maps either obtained with conventional interpretation of aerial photos of 1995, digitized in the software CAD Overlay and geo-referenced in the AutoCAD Map, or with the application of digital classification systems on SPOT-XS and PAN orbital images of 1995, followed by field observations. The crossing of conventional and digital maps of a same area with the CIS allows to verify the overall results obtained through the computational handling of orbital images. With the use of digital processing techniques, specially multiespectral classification, it is possible to detect automatically and visually the impacts related to the mineral extraction, as well as to survey the land use, vegetation and environmental impacts.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geografia - IGCE
Fragmentos dos trilhos na paisagem de São Paulo: os brownfields ferroviários e sua refuncionalização
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A região onde está inserida a área de estudo, tem sofrido explorações predatórias e má utilização do solo. Áreas antes ocupadas por cerrados, campos sujo e limpo foram substituídas pelos reflorestamentos com eucalipto, devido aos incentivos fiscais e a instalação de companhias reflorestadoras na região, pelo baixo valor das terras e baixa fertilidade do solo; mas com um grande potencial para o desenvolvimento de essências florestais. O presente trabalho visou a elaboração do Diagnóstico Físico Conservacionista da bacia do rio Capivara - Botucatu (SP), baseada no parâmetro ambiental “Coeficiente de Rugosidade”, tendo-se por unidade de estudo 10 microbacias. Os resultados obtidos com a metodologia utilizada, no estudo da bacia do rio Capivara - Botucatu (SP), para o diagnóstico físico conservacionista permitiram mostrar que o grau de deterioração físico ambiental para a bacia foi 44,34%, muito acima do limite de 10% aceitável. O alto valor do grau de deterioração, provavelmente, foi devido ao mau uso da terra que vem provocando erosões, assoreamentos de reservatórios e cursos d’águas. O parâmetro ambiental médio “coeficiente de rugosidade” para as dez microbacias do rio Capivara, permitiu classificá-las para utilização com agricultura e urbanização, pecuária e reflorestamento; ou seja, indicou que a vocação principal desta é para uso com pecuária (Classe B); as classes de declive de 0 a 12% (Classe III) e de 12 a 20% (Classe IV), respectivamente, predominaram em 62,95% e 27,00% da área total das microbacias estudadas, ocorrendo em na sua maior parte nas unidades de solo LVA (46,56%) e RQ (19,86%). A predominância de florestas, capoeiras e pastagens nas microbacias, provavelmente é reflexo da predominância de solos de baixa fertilidade. - As imagens do Sensor TM do LANDSAT 5, permitiram o mapeamento do uso da terra da bacia de maneira rápida, que segundo o índice Kappa foi de boa qualidade (0,45), além de fornecer um banco de dados para futuros planejamentos nessa área. O SIG - IDRISI permitiu constatar através de seus diferentes módulos para georreferenciamento, classificação digital do uso da terra e modelo matemático, as áreas de uso da terra com rapidez. Os parâmetros, coeficientes de forma e circularidade mostraram que as microbacias apresentam baixo perigo de enchentes devido ao seu formato, bem como, o coeficiente de rugosidade permitiu classificar as microbacias 1, 2, 3, 4 e 8 com vocação para agricultura; as 6 e 7 para pecuária; a 5 para pecuária e reflorestamento e as 9 e 10 para floresta e reflorestamento.
Resumo:
A reconversão de áreas tradicionalmente industriais desativadas em benefício de novos usos têm se tornado uma prática recorrente nas áreas metropolitanas, podendo ser analisada pelo estudo das alterações morfológicas e funcionais das formas e estruturas intra-urbanas. Esta pesquisa propõe o uso de técnicas de geoprocessamento para a elaboração do mapeamento das demolições, verticalizações e refuncionalizações no distrito da Mooca, visando o diagnóstico dos antigos espaços fabris em transição na metrópole paulista. Por meio do desenvolvimento de dois métodos de análise da informação geográfica: a classificação digital automática e a classificação digital analógica de séries temporais de e de imagens de satélite de alta resolução espacial, objetiva-se compreender os processos modificadores da paisagem urbana e de revalorização de áreas fabris. A escolha do distrito da Mooca, na cidade de São Paulo, para esta análise justifica-se pela sua função industrial histórica, estruturada pelo eixo ferroviário da Estrada de Ferro Santos-Jundiaí e pelas recentes mudanças no uso do solo industrial. A importância de reconhecer estes espaços incide no futuro aproveitamento dos mesmos, bem como às avaliações de renovação, de substituição das tipologias edificativas, alterações de cunho demográfico, e outras características imprescindíveis à compreensão do processo de refuncionalização e revalorização de antigas áreas industriais.
Resumo:
One of needs of modern agriculture is the prediction of spatial variability of soil properties at more detailed scales for sustainable management and optimization of management practices. The mathematical model associated with knowledge of variability of soil attributes and mapping of relief forms has helped in agricultural planning. In this regard the aim of this study was to characterize the spatial variability of physical and chemical properties of Oxisols and Ultisols using numerical classification and the digital elevation model. Two distinct landforms: convex for the Oxisol (158 ha) and linear for the Ultisol (172 ha). 53 samples from the Oxisol and 57 samples from the Ultisol were taken. Multivariate analysis of clusters of attributes studied from their euclidean distances was performed. This analysis by dendograms along with digital elevation models for different soils characterized was more homogeneous in Ultisol groups, and less homogeneous for the Oxisol in convex landform. These quantitative methods showed that the landforms conditioned the spatial pattern of soil attributes.
Resumo:
Modern wireless systems employ adaptive techniques to provide high throughput while observing desired coverage, Quality of Service (QoS) and capacity. An alternative to further enhance data rate is to apply cognitive radio concepts, where a system is able to exploit unused spectrum on existing licensed bands by sensing the spectrum and opportunistically access unused portions. Techniques like Automatic Modulation Classification (AMC) could help or be vital for such scenarios. Usually, AMC implementations rely on some form of signal pre-processing, which may introduce a high computational cost or make assumptions about the received signal which may not hold (e.g. Gaussianity of noise). This work proposes a new method to perform AMC which uses a similarity measure from the Information Theoretic Learning (ITL) framework, known as correntropy coefficient. It is capable of extracting similarity measurements over a pair of random processes using higher order statistics, yielding in better similarity estimations than by using e.g. correlation coefficient. Experiments carried out by means of computer simulation show that the technique proposed in this paper presents a high rate success in classification of digital modulation, even in the presence of additive white gaussian noise (AWGN)
Resumo:
O presente trabalho apresenta uma alternativa ao processo de classificação do defeito da segregação central em amostras de aço, utilizando as imagens digitais que são geradas durante o ensaio de Baumann. O algoritmo proposto tem como objetivo agregar as técnicas de processamento digital de imagens e o conhecimento dos especialistas sobre o defeito da segregação central, visando a classificação do defeito de referência. O algoritmo implementado inclui a identificação e a segmentação da linha segregada por meio da aplicação da transformada de Hough e limiar adaptativo. Adicionalmente, o algoritmo apresenta uma proposta para o mapeamento dos atributos da segregação central nos diferentes graus de severidade do defeito, em função dos critérios de continuidade e intensidade. O mapeamento foi realizado por meio da análise das características individuais, como comprimento, largura e área, dos elementos segmentados que compõem a linha segregada. A avaliação do desempenho do algoritmo foi realizada em dois momentos específicos, de acordo com sua fase de implementação. Para a realização da avaliação, foram analisadas 255 imagens de amostras reais, oriundas de duas usinas siderúrgicas, distribuídas nos diferentes graus de severidade. Os resultados da primeira fase de implementação mostram que a identificação da linha segregada apresenta acurácia de 93%. As classificações oriundas do mapeamento realizado para as classes de criticidade do defeito, na segunda fase de implementação, apresentam acurácia de 92% para o critério de continuidade e 68% para o critério de intensidade.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.