526 resultados para centrifugal compressor
Resumo:
Tämän diplomityön tavoitteena on ollut suunnitella radiaalikompressori. Aluksi on tutustuttu radiaalikompressorissa tapahtuviin ilmiöihin, jonka jälkeen radiaalikompressori on suunniteltu. Reunaehtoina suunnittelussa olivat toimilaitteelta saatava teho 250 kW ja sen suurin pyörimisnopeus 500 Hz. Esisuunnittelu on tehty Virtaustekniikan laboratoriossa kehitetyllä CentriFlow-ohjelmalla. Juoksupyörän muoto on suunniteltu viskoosittomilla 2D-malleilla. Juoksupyörän muodon suunniittelussa on käytetty kaupallista AxCent-ohjelmaa. Juoksupyörän muoto on tarkistettu laskennallisen virtausdynamiikan avulla. Virtausmallinnuksessa käytettiin FinFlo-ohjelmaa. Suunnittelun ja mallinnuksen pohjalta valittiin kolme erilaista juoksupyörää valmistukseen.
Resumo:
In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.
Resumo:
Centrifuge experiments modeling single-phase flow in prototype porous media typically use the same porous medium and permeant. Then, well-known scaling laws are used to transfer the results to the prototype. More general scaling laws that relax these restrictions are presented. For permeants that are immiscible with an accompanying gas phase, model-prototype (i.e., centrifuge model experiment-target system) scaling is demonstrated. Scaling is shown to be feasible for Miller-similar (or geometrically similar) media. Scalings are presented for a more, general class, Lisle-similar media, based on the equivalence mapping of Richards' equation onto itself. Whereas model-prototype scaling of Miller-similar media can be realized easily for arbitrary boundary conditions, Lisle-similarity in a finite length medium generally, but not always, involves a mapping to a moving boundary problem. An exception occurs for redistribution in Lisle-similar porous media, which is shown to map to spatially fixed boundary conditions. Complete model-prototype scalings for this example are derived.
Resumo:
The settling characteristics of cell debris and inclusion bodies prior to, and following, fractionation in a disc-stack centrifuge were measured using Cumulative Sedimentation Analysis (CSA) and Centrifugal Disc photosedimentation (CDS). The impact of centrifuge feedrate and repeated homogenisation on both cell debris and inclusion body collection efficiency was investigated. Increasing the normalised centrifuge feedrate (Q/Sigma) from 1.32 x 10(-9) m s(-1) to 3.97 x 10(-9) m s(-1) leads to a 36% increase in inclusion body paste purity. Purity may also be improved by repeated homogenisation. Increasing the number of homogeniser passes results in smaller cell debris size whilst leaves inclusion body size unaltered. At a normalised centrifuge feedrate of 2.65 x 10(-9) m s(-1), increasing the number of homogeniser passes from two (2) to ten (10) improved overall inclusion body paste purity by 58%. Grade-efficiency curves for both the cell debris and inclusion bodies have also been generated in this study. The data are described using an equation developed by Mannweiler (1989) with parameters of k = 0.15-0.26 and n = 2.5-2.6 for inclusion bodies, and k = 0.12-0.14 and n = 2.0-2.2 for cell debris. This is the first accurate experimentally-determined grade efficiency curve for cell debris. Previous studies have simply estimated debris grade efficiency curves using an approximate debris size distribution and grade efficiency curves determined with 'ideal particles' (e.g. spherical PVA particles). The findings of this study may be used to simulate and optimise the centrifugal fractionation of inclusion bodies from cell debris.
Seeding Osteoblastic Cells into a Macroporous Biodegradable CaP/PLGA Scaffold by a Centrifugal Force
Resumo:
This study aims to construct a hybrid biomaterial by seeding osteoblastic cells into a CaP/PLGA scaffold by a centrifugal force. Constructs are evaluated with respect to potential application in bone tissue engineering. Cells adher, spread, and form a layer of tissue lining the scaffold and are capable of migrating, proliferating, and producing mineralized matrix. We have demonstrated that the centrifugal force is highly efficient for constructing a hybrid biomaterial, which acts similarly to bone explants in a cell culture environment. In this way, these constructs could mimic an autogenous bone graft in clinical circumstances. Such a strategy may be useful for bone tissue engineering.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Selostus: Ó-lactalbumiinin ja ¿̐ư-lactoglobuliinin sentrifugointierotuksen optimointi
Resumo:
A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is suppressed. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions within the above subclass.
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.
Resumo:
Diplomityössä on tutkittu radiaalikompressorin juoksupyörän virtauskanavan suunnittelua ja esitelty yleisesti käytetyt suunnittelumenetelmät. Virtauskanavan muodon vaikutukset virtauskenttään on esitetty. Työssä on kehitetty uusi tietokoneohjelma juoksupyörän kolmiulotteisen geometrian luomiseen, yksiulotteisesta suunnittelusta saatujen päämittojen pohjalta. Ohjelmalla luotua juoksupyörän geometriaa voidaan käyttää virtaus- ja lujuusanalyyseissä. Ohjelmaan on myös liitetty kaksiulotteinen kokoonpuristuvan viskoosittoman virtauksen ratkaisija.
Resumo:
Centrifugal pumps are widely used in industrial and municipal applications, and they are an important end-use application of electric energy. However, in many cases centrifugal pumps operate with a significantly lower energy efficiency than they actually could, which typically has an increasing effect on the pump energy consumption and the resulting energy costs. Typical reasons for this are the incorrect dimensioning of the pumping system components and inefficiency of the applied pump control method. Besides the increase in energy costs, an inefficient operation may increase the risk of a pump failure and thereby the maintenance costs. In the worst case, a pump failure may lead to a process shutdown accruing additional costs. Nowadays, centrifugal pumps are often controlled by adjusting their rotational speed, which affects the resulting flow rate and output pressure of the pumped fluid. Typically, the speed control is realised with a frequency converter that allows the control of the rotational speed of an induction motor. Since a frequency converter can estimate the motor rotational speed and shaft torque without external measurement sensors on the motor shaft, it also allows the development and use of sensorless methods for the estimation of the pump operation. Still today, the monitoring of pump operation is based on additional measurements and visual check-ups, which may not be applicable to determine the energy efficiency of the pump operation. This doctoral thesis concentrates on the methods that allow the use of a frequency converter as a monitoring and analysis device for a centrifugal pump. Firstly, the determination of energy-efficiency- and reliability-based limits for the recommendable operating region of a variable-speed-driven centrifugal pump is discussed with a case study for the laboratory pumping system. Then, three model-based estimation methods for the pump operating location are studied, and their accuracy is determined by laboratory tests. In addition, a novel method to detect the occurrence of cavitation or flow recirculation in a centrifugal pump by a frequency converter is introduced. Its sensitivity compared with known cavitation detection methods is evaluated, and its applicability is verified by laboratory measurements for three different pumps and by using two different frequency converters. The main focus of this thesis is on the radial flow end-suction centrifugal pumps, but the studied methods can also be feasible with mixed and axial flow centrifugal pumps, if allowed by their characteristics.
Resumo:
Approximately a quarter of electrical power consumption in pulp and paper industry is used in different pumping systems. Therefore, improving pumping system efficiency is a considerable way to reduce energy consumption in different processes. Pumping of wood pulp in different consistencies is common in pulp and paper industry. Earlier, centrifugal pumps were used to pump pulp only at low consistencies, but development of MC technology has made it possible to pump medium consistency pulp. Pulp is a non-Newtonian fluid, which flow characteristics are significantly different than what of water. In this thesis is examined the energy efficiency of pumping medium consistency pulp with centrifugal pump. The factors effecting the pumping of MC pulp are presented and through case study is examined the energy efficiency of pumping in practice. With data obtained from the case study are evaluated the effects of pump rotational speed and pulp consistency on energy efficiency. Additionally, losses caused by control valve and validity of affinity laws in pulp pumping are evaluated. The results of this study can be used for demonstrating the energy consumption of MC pumping processes and finding ways to improve energy efficiency in these processes.
Resumo:
Centrifugal pumps are a notable end-consumer of electrical energy. Typical application of a centrifugal pump is the filling or emptying of a reservoir tank, where the pump is often operated at a constant speed until the process is completed. Installing a frequency converter to control the motor substitutes the traditional fixed-speed pumping system, allows the optimization of rotational speed profile for the pumping tasks and enables the estimation of rotational speed and shaft torque of an induction motor without any additional measurements from the motor shaft. Utilization of variable-speed operation provides the possibility to decrease the overall energy consumption of the pumping task. The static head of the pumping process may change during the pumping task. In such systems, the minimum rotational speed changes during reservoir filling or emptying, and the minimum energy consumption can’t be achieved with a fixed rotational speed. This thesis presents embedded algorithms to automatically identify, optimize and monitor pumping processes between supply and destination reservoirs, and evaluates the changing static head –based optimization method.
Resumo:
Centrifugal pumps are one of the major energy consuming end-devices in developed coun-tries both in industrial and services sectors. According to recent studies, even 30 % of the energy used in pumping systems could be saved by more careful choosing of devices and system design. One of the most efficient and affordable ways to decrease the energy con-sumption of the pumping system is to substitute traditionally used flow control methods, like valve control, with modern variable speed drive (VSD) control. In this thesis, Microsoft Excel based program, Savings Calculator for Centrifugal Pumps (SCCP), is designed. SCCP calculates the achievable energy and financial savings when throttle control is substituted by VSD control in the pumping system. Compared to the sim-ilar existing programs, the goal is to make SCCP calculations more accurate and require less input information. Also some useful additional features are added to the designed program to make it more user friendly. The reliability of the calculations of designed program seem to vary depending on case. The results are corresponding accurately to the laboratory measurements, but there occurs high deviations in some cases, when the results are compared to the pump information specified by manufacturer. On the basis of verification in this thesis, SCCP seems to be at least as accurate as similar existing programs and it can be used as help in investment decision whether to have VSD or not.